Simplify thop imports (#18717)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
c6dd277493
commit
daaebba220
5 changed files with 6 additions and 17 deletions
|
|
@ -567,7 +567,7 @@ class HUBDatasetStats:
|
||||||
|
|
||||||
# Get dataset statistics
|
# Get dataset statistics
|
||||||
if self.task == "classify":
|
if self.task == "classify":
|
||||||
from torchvision.datasets import ImageFolder
|
from torchvision.datasets import ImageFolder # scope for faster 'import ultralytics'
|
||||||
|
|
||||||
dataset = ImageFolder(self.data[split])
|
dataset = ImageFolder(self.data[split])
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -839,7 +839,7 @@ class Results(SimpleClass):
|
||||||
>>> df_result = results[0].to_df()
|
>>> df_result = results[0].to_df()
|
||||||
>>> print(df_result)
|
>>> print(df_result)
|
||||||
"""
|
"""
|
||||||
import pandas as pd
|
import pandas as pd # scope for faster 'import ultralytics'
|
||||||
|
|
||||||
return pd.DataFrame(self.summary(normalize=normalize, decimals=decimals))
|
return pd.DataFrame(self.summary(normalize=normalize, decimals=decimals))
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1131,7 +1131,7 @@ class TorchVision(nn.Module):
|
||||||
|
|
||||||
def __init__(self, c1, c2, model, weights="DEFAULT", unwrap=True, truncate=2, split=False):
|
def __init__(self, c1, c2, model, weights="DEFAULT", unwrap=True, truncate=2, split=False):
|
||||||
"""Load the model and weights from torchvision."""
|
"""Load the model and weights from torchvision."""
|
||||||
import torchvision
|
import torchvision # scope for faster 'import ultralytics'
|
||||||
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if hasattr(torchvision.models, "get_model"):
|
if hasattr(torchvision.models, "get_model"):
|
||||||
|
|
|
||||||
|
|
@ -7,6 +7,7 @@ import types
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
import thop
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
@ -86,11 +87,6 @@ from ultralytics.utils.torch_utils import (
|
||||||
time_sync,
|
time_sync,
|
||||||
)
|
)
|
||||||
|
|
||||||
try:
|
|
||||||
import thop
|
|
||||||
except ImportError:
|
|
||||||
thop = None
|
|
||||||
|
|
||||||
|
|
||||||
class BaseModel(nn.Module):
|
class BaseModel(nn.Module):
|
||||||
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""
|
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""
|
||||||
|
|
|
||||||
|
|
@ -12,6 +12,7 @@ from pathlib import Path
|
||||||
from typing import Union
|
from typing import Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import thop
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
@ -30,11 +31,6 @@ from ultralytics.utils import (
|
||||||
)
|
)
|
||||||
from ultralytics.utils.checks import check_version
|
from ultralytics.utils.checks import check_version
|
||||||
|
|
||||||
try:
|
|
||||||
import thop
|
|
||||||
except ImportError:
|
|
||||||
thop = None
|
|
||||||
|
|
||||||
# Version checks (all default to version>=min_version)
|
# Version checks (all default to version>=min_version)
|
||||||
TORCH_1_9 = check_version(torch.__version__, "1.9.0")
|
TORCH_1_9 = check_version(torch.__version__, "1.9.0")
|
||||||
TORCH_1_13 = check_version(torch.__version__, "1.13.0")
|
TORCH_1_13 = check_version(torch.__version__, "1.13.0")
|
||||||
|
|
@ -367,9 +363,6 @@ def model_info_for_loggers(trainer):
|
||||||
|
|
||||||
def get_flops(model, imgsz=640):
|
def get_flops(model, imgsz=640):
|
||||||
"""Return a YOLO model's FLOPs."""
|
"""Return a YOLO model's FLOPs."""
|
||||||
if not thop:
|
|
||||||
return 0.0 # if not installed return 0.0 GFLOPs
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
model = de_parallel(model)
|
model = de_parallel(model)
|
||||||
p = next(model.parameters())
|
p = next(model.parameters())
|
||||||
|
|
@ -674,7 +667,7 @@ def profile(input, ops, n=10, device=None, max_num_obj=0):
|
||||||
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
||||||
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
||||||
try:
|
try:
|
||||||
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
|
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 # GFLOPs
|
||||||
except Exception:
|
except Exception:
|
||||||
flops = 0
|
flops = 0
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue