Update docs (#71)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
e629335f6d
commit
d85b44f259
11 changed files with 286 additions and 35 deletions
71
docs/sdk.md
71
docs/sdk.md
|
|
@ -1,11 +1,70 @@
|
|||
# Python SDK
|
||||
## Using YOLO models
|
||||
This is the simplest way of simply using yolo models in a python environment. It can be imported from the `ultralytics` module.
|
||||
|
||||
We provide 2 pythonic interfaces for YOLO models:
|
||||
!!! example "Usage"
|
||||
=== "Training"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
<b> Model Interface </b> - To simply build, load, train or run inference on a model in a python application
|
||||
model = YOLO()
|
||||
model.new("n.yaml") # pass any model type
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
```
|
||||
|
||||
<b> Trainer Interface </b> - To customize trainier elements depending on the task. Suitable for R&D ideas like architecutres.
|
||||
=== "Training pretrained"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
______________________________________________________________________
|
||||
model = YOLO()
|
||||
model.load("n.pt") # pass any model type
|
||||
model(...) # inference
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
```
|
||||
|
||||
### Model Interface
|
||||
=== "Resume Training"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model.resume(task="detect") # resume last detection training
|
||||
model.resume(task="detect", model="last.pt") # resume from a given model
|
||||
```
|
||||
|
||||
More functionality coming soon
|
||||
|
||||
To know more about using `YOLO` models, refer Model class refernce
|
||||
|
||||
[Model reference](#){ .md-button .md-button--primary}
|
||||
|
||||
---
|
||||
### Customizing Tasks with Trainers
|
||||
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from `BaseTrainer`.
|
||||
You can easily cusotmize Trainers to support custom tasks or explore R&D ideas.
|
||||
|
||||
!!! tip "Trainer Examples"
|
||||
=== "DetectionTrainer"
|
||||
```python
|
||||
from ultralytics import yolo
|
||||
|
||||
trainer = yolo.DetectionTrainer(data=..., epochs=1) # override default configs
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
=== "SegmentationTrainer"
|
||||
```python
|
||||
from ultralytics import yolo
|
||||
|
||||
trainer = yolo.SegmentationTrainer(data=..., epochs=1) # override default configs
|
||||
trainer.train()
|
||||
```
|
||||
=== "ClassificationTrainer"
|
||||
```python
|
||||
from ultralytics import yolo
|
||||
|
||||
trainer = yolo.ClassificationTrainer(data=..., epochs=1) # override default configs
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section. More details about the base engine classes is available in the reference section.
|
||||
|
||||
[Customization tutorials](#){ .md-button .md-button--primary}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue