Update YOLOv3 and YOLOv5 YAMLs (#7574)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
596c068b18
commit
d762496989
51 changed files with 284 additions and 304 deletions
|
|
@ -161,8 +161,8 @@ The objectness losses of the three prediction layers (`P3`, `P4`, `P5`) are weig
|
|||
|
||||
The YOLOv5 architecture makes some important changes to the box prediction strategy compared to earlier versions of YOLO. In YOLOv2 and YOLOv3, the box coordinates were directly predicted using the activation of the last layer.
|
||||
|
||||
+c_x)
|
||||
+c_y)
|
||||
+c_x>)
|
||||
+c_y>)
|
||||

|
||||

|
||||
|
||||
|
|
@ -172,10 +172,10 @@ However, in YOLOv5, the formula for predicting the box coordinates has been upda
|
|||
|
||||
The revised formulas for calculating the predicted bounding box are as follows:
|
||||
|
||||
-0.5)+c_x)
|
||||
-0.5)+c_y)
|
||||
)^2)
|
||||
)^2)
|
||||
-0.5)+c_x>)
|
||||
-0.5)+c_y>)
|
||||
)^2>)
|
||||
)^2>)
|
||||
|
||||
Compare the center point offset before and after scaling. The center point offset range is adjusted from (0, 1) to (-0.5, 1.5). Therefore, offset can easily get 0 or 1.
|
||||
|
||||
|
|
@ -197,11 +197,11 @@ This process follows these steps:
|
|||
|
||||

|
||||
|
||||
)
|
||||
>)
|
||||
|
||||
)
|
||||
>)
|
||||
|
||||
)
|
||||
>)
|
||||
|
||||

|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue