Add FAQs to Docs Datasets and Help sections (#14211)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
64862f1b69
commit
d5db9c916f
73 changed files with 3296 additions and 110 deletions
|
|
@ -63,6 +63,7 @@ Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full
|
|||
# Train the model
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
@ -102,6 +103,7 @@ Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need t
|
|||
metrics.box.map75 # map75
|
||||
metrics.box.maps # a list contains map50-95 of each category
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
@ -127,6 +129,7 @@ Use a trained YOLOv8n model to run predictions on images.
|
|||
# Predict with the model
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
@ -154,6 +157,7 @@ Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
|||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue