Add FAQs to Docs Datasets and Help sections (#14211)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-07-04 20:42:31 +02:00 committed by GitHub
parent 64862f1b69
commit d5db9c916f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
73 changed files with 3296 additions and 110 deletions

View file

@ -121,23 +121,23 @@ Exporting a YOLOv8 model to ONNX format is straightforward with Ultralytics. It
=== "Python"
```python
from ultralytics import YOLO
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt") # load an official model
model = YOLO("path/to/best.pt") # load a custom trained model
# Load a model
model = YOLO("yolov8n.pt") # load an official model
model = YOLO("path/to/best.pt") # load a custom trained model
# Export the model
model.export(format="onnx")
```
# Export the model
model.export(format="onnx")
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
```bash
yolo export model=yolov8n.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
For more details on the process, including advanced options like handling different input sizes, refer to the [ONNX](../integrations/onnx.md) section.
@ -159,18 +159,18 @@ INT8 quantization is an excellent way to compress the model and speed up inferen
=== "Python"
```python
from ultralytics import YOLO
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt") # Load a model
model.export(format="onnx", int8=True)
```
model = YOLO("yolov8n.pt") # Load a model
model.export(format="onnx", int8=True)
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx int8=True # export model with INT8 quantization
```
```bash
yolo export model=yolov8n.pt format=onnx int8=True # export model with INT8 quantization
```
INT8 quantization can be applied to various formats, such as TensorRT and CoreML. More details can be found in the [Export](../modes/export.md) section.
@ -184,18 +184,18 @@ To enable this feature, use the `dynamic=True` flag during export:
=== "Python"
```python
from ultralytics import YOLO
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
model.export(format="onnx", dynamic=True)
```
model = YOLO("yolov8n.pt")
model.export(format="onnx", dynamic=True)
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx dynamic=True
```
```bash
yolo export model=yolov8n.pt format=onnx dynamic=True
```
For additional context, refer to the [dynamic input size configuration](#arguments).