Add FAQs to Docs Datasets and Help sections (#14211)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
64862f1b69
commit
d5db9c916f
73 changed files with 3296 additions and 110 deletions
|
|
@ -115,18 +115,18 @@ Ultralytics YOLOv8 offers a Benchmark mode to assess your model's performance ac
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics.utils.benchmarks import benchmark
|
||||
```python
|
||||
from ultralytics.utils.benchmarks import benchmark
|
||||
|
||||
# Benchmark on GPU
|
||||
benchmark(model="yolov8n.pt", data="coco8.yaml", imgsz=640, half=False, device=0)
|
||||
```
|
||||
# Benchmark on GPU
|
||||
benchmark(model="yolov8n.pt", data="coco8.yaml", imgsz=640, half=False, device=0)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo benchmark model=yolov8n.pt data='coco8.yaml' imgsz=640 half=False device=0
|
||||
```
|
||||
```bash
|
||||
yolo benchmark model=yolov8n.pt data='coco8.yaml' imgsz=640 half=False device=0
|
||||
```
|
||||
|
||||
For more details on benchmark arguments, visit the [Arguments](#arguments) section.
|
||||
|
||||
|
|
|
|||
|
|
@ -121,23 +121,23 @@ Exporting a YOLOv8 model to ONNX format is straightforward with Ultralytics. It
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
For more details on the process, including advanced options like handling different input sizes, refer to the [ONNX](../integrations/onnx.md) section.
|
||||
|
||||
|
|
@ -159,18 +159,18 @@ INT8 quantization is an excellent way to compress the model and speed up inferen
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt") # Load a model
|
||||
model.export(format="onnx", int8=True)
|
||||
```
|
||||
model = YOLO("yolov8n.pt") # Load a model
|
||||
model.export(format="onnx", int8=True)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx int8=True # export model with INT8 quantization
|
||||
```
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx int8=True # export model with INT8 quantization
|
||||
```
|
||||
|
||||
INT8 quantization can be applied to various formats, such as TensorRT and CoreML. More details can be found in the [Export](../modes/export.md) section.
|
||||
|
||||
|
|
@ -184,18 +184,18 @@ To enable this feature, use the `dynamic=True` flag during export:
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
model.export(format="onnx", dynamic=True)
|
||||
```
|
||||
model = YOLO("yolov8n.pt")
|
||||
model.export(format="onnx", dynamic=True)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx dynamic=True
|
||||
```
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx dynamic=True
|
||||
```
|
||||
|
||||
For additional context, refer to the [dynamic input size configuration](#arguments).
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue