Add FAQs to Docs Datasets and Help sections (#14211)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
64862f1b69
commit
d5db9c916f
73 changed files with 3296 additions and 110 deletions
|
|
@ -119,6 +119,7 @@ The YOLOv8n model in PyTorch format is converted to NCNN to run inference with t
|
|||
# Run inference
|
||||
results = ncnn_model("https://ultralytics.com/images/bus.jpg")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
@ -236,6 +237,7 @@ To reproduce the above Ultralytics benchmarks on all [export formats](../modes/e
|
|||
# Benchmark YOLOv8n speed and accuracy on the COCO8 dataset for all all export formats
|
||||
results = model.benchmarks(data="coco8.yaml", imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
@ -344,6 +346,7 @@ There are 2 methods of using the Raspberry Pi Camera to inference YOLOv8 models.
|
|||
# Run inference
|
||||
results = model("tcp://127.0.0.1:8888")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue