Add FAQs to Docs Datasets and Help sections (#14211)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-07-04 20:42:31 +02:00 committed by GitHub
parent 64862f1b69
commit d5db9c916f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
73 changed files with 3296 additions and 110 deletions

View file

@ -1,6 +1,6 @@
---
comments: true
description: Explore Roboflow's Carparts Segmentation Dataset for automotive AI applications. Enhance your segmentation models with rich, annotated data.
description: Explore the Roboflow Carparts Segmentation Dataset for automotive AI applications. Enhance your segmentation models with rich, annotated data.
keywords: Carparts Segmentation Dataset, Roboflow, computer vision, automotive AI, vehicle maintenance, Ultralytics
---
@ -84,6 +84,7 @@ If you integrate the Carparts Segmentation dataset into your research or develop
!!! Quote ""
=== "BibTeX"
```bibtex
@misc{ car-seg-un1pm_dataset,
title = { car-seg Dataset },
@ -100,3 +101,60 @@ If you integrate the Carparts Segmentation dataset into your research or develop
```
We extend our thanks to the Roboflow team for their dedication in developing and managing the Carparts Segmentation dataset, a valuable resource for vehicle maintenance and research projects. For additional details about the Carparts Segmentation dataset and its creators, please visit the [CarParts Segmentation Dataset Page](https://universe.roboflow.com/gianmarco-russo-vt9xr/car-seg-un1pm).
## FAQ
### What is the Roboflow Carparts Segmentation Dataset?
The [Roboflow Carparts Segmentation Dataset](https://universe.roboflow.com/gianmarco-russo-vt9xr/car-seg-un1pm) is a curated collection of images and videos specifically designed for car part segmentation tasks in computer vision. This dataset includes a diverse range of visuals captured from multiple perspectives, making it an invaluable resource for training and testing segmentation models for automotive applications.
### How can I use the Carparts Segmentation Dataset with Ultralytics YOLOv8?
To train a YOLOv8 model on the Carparts Segmentation dataset, you can follow these steps:
!!! Example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="carparts-seg.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo segment train data=carparts-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
For more details, refer to the [Training](../../modes/train.md) documentation.
### What are some applications of Carparts Segmentation?
Carparts Segmentation can be widely applied in various fields such as:
- **Automotive quality control**
- **Auto repair and maintenance**
- **E-commerce cataloging**
- **Traffic monitoring**
- **Autonomous vehicles**
- **Insurance claim processing**
- **Recycling initiatives**
- **Smart city projects**
This segmentation helps in accurately identifying and categorizing different vehicle components, enhancing the efficiency and automation in these industries.
### Where can I find the dataset configuration file for Carparts Segmentation?
The dataset configuration file for the Carparts Segmentation dataset, `carparts-seg.yaml`, can be found at the following location: [carparts-seg.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/carparts-seg.yaml).
### Why should I use the Carparts Segmentation Dataset?
The Carparts Segmentation Dataset provides rich, annotated data essential for developing high-accuracy segmentation models in automotive computer vision. This dataset's diversity and detailed annotations improve model training, making it ideal for applications like vehicle maintenance automation, enhancing vehicle safety systems, and supporting autonomous driving technologies. Partnering with a robust dataset accelerates AI development and ensures better model performance.
For more details, visit the [CarParts Segmentation Dataset Page](https://universe.roboflow.com/gianmarco-russo-vt9xr/car-seg-un1pm).

View file

@ -102,3 +102,63 @@ If you use the COCO-Seg dataset in your research or development work, please cit
```
We extend our thanks to the COCO Consortium for creating and maintaining this invaluable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the [COCO dataset website](https://cocodataset.org/#home).
## FAQ
### What is the COCO-Seg dataset and how does it differ from the original COCO dataset?
The [COCO-Seg](https://cocodataset.org/#home) dataset is an extension of the original COCO (Common Objects in Context) dataset, specifically designed for instance segmentation tasks. While it uses the same images as the COCO dataset, COCO-Seg includes more detailed segmentation annotations, making it a powerful resource for researchers and developers focusing on object instance segmentation.
### How can I train a YOLOv8 model using the COCO-Seg dataset?
To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a detailed list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! Example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="coco-seg.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco-seg.yaml model=yolov8n.pt epochs=100 imgsz=640
```
### What are the key features of the COCO-Seg dataset?
The COCO-Seg dataset includes several key features:
- Retains the original 330K images from the COCO dataset.
- Annotates the same 80 object categories found in the original COCO.
- Provides more detailed instance segmentation masks for each object.
- Uses standardized evaluation metrics such as mean Average Precision (mAP) for object detection and mean Average Recall (mAR) for instance segmentation tasks.
### What pretrained models are available for COCO-Seg, and what are their performance metrics?
The COCO-Seg dataset supports multiple pretrained YOLOv8 segmentation models with varying performance metrics. Here's a summary of the available models and their key metrics:
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|----------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
### How is the COCO-Seg dataset structured and what subsets does it contain?
The COCO-Seg dataset is partitioned into three subsets for specific training and evaluation needs:
1. **Train2017**: Contains 118K images used primarily for training instance segmentation models.
2. **Val2017**: Comprises 5K images utilized for validation during the training process.
3. **Test2017**: Encompasses 20K images reserved for testing and benchmarking trained models. Note that ground truth annotations for this subset are not publicly available, and performance results are submitted to the [COCO evaluation server](https://codalab.lisn.upsaclay.fr/competitions/7383) for assessment.

View file

@ -77,3 +77,48 @@ If you use the COCO dataset in your research or development work, please cite th
```
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the [COCO dataset website](https://cocodataset.org/#home).
## FAQ
### What is the COCO8-Seg dataset, and how is it used in Ultralytics YOLOv8?
The **COCO8-Seg dataset** is a compact instance segmentation dataset by Ultralytics, consisting of the first 8 images from the COCO train 2017 set—4 images for training and 4 for validation. This dataset is tailored for testing and debugging segmentation models or experimenting with new detection methods. It is particularly useful with Ultralytics [YOLOv8](https://github.com/ultralytics/ultralytics) and [HUB](https://hub.ultralytics.com) for rapid iteration and pipeline error-checking before scaling to larger datasets. For detailed usage, refer to the model [Training](../../modes/train.md) page.
### How can I train a YOLOv8n-seg model using the COCO8-Seg dataset?
To train a **YOLOv8n-seg** model on the COCO8-Seg dataset for 100 epochs with an image size of 640, you can use Python or CLI commands. Here's a quick example:
!!! Example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-seg.pt") # Load a pretrained model (recommended for training)
# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco8-seg.yaml model=yolov8n.pt epochs=100 imgsz=640
```
For a thorough explanation of available arguments and configuration options, you can check the [Training](../../modes/train.md) documentation.
### Why is the COCO8-Seg dataset important for model development and debugging?
The **COCO8-Seg dataset** is ideal for its manageability and diversity within a small size. It consists of only 8 images, providing a quick way to test and debug segmentation models or new detection approaches without the overhead of larger datasets. This makes it an efficient tool for sanity checks and pipeline error identification before committing to extensive training on large datasets. Learn more about dataset formats [here](https://docs.ultralytics.com/datasets/segment).
### Where can I find the YAML configuration file for the COCO8-Seg dataset?
The YAML configuration file for the **COCO8-Seg dataset** is available in the Ultralytics repository. You can access the file directly [here](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-seg.yaml). The YAML file includes essential information about dataset paths, classes, and configuration settings required for model training and validation.
### What are some benefits of using mosaicing during training with the COCO8-Seg dataset?
Using **mosaicing** during training helps increase the diversity and variety of objects and scenes in each training batch. This technique combines multiple images into a single composite image, enhancing the model's ability to generalize to different object sizes, aspect ratios, and contexts within the scene. Mosaicing is beneficial for improving a model's robustness and accuracy, especially when working with small datasets like COCO8-Seg. For an example of mosaiced images, see the [Sample Images and Annotations](#sample-images-and-annotations) section.

View file

@ -91,3 +91,63 @@ If you incorporate the crack segmentation dataset into your research or developm
```
We would like to acknowledge the Roboflow team for creating and maintaining the Crack Segmentation dataset as a valuable resource for the road safety and research projects. For more information about the Crack segmentation dataset and its creators, visit the [Crack Segmentation Dataset Page](https://universe.roboflow.com/university-bswxt/crack-bphdr).
## FAQ
### What is the Roboflow Crack Segmentation Dataset?
The [Roboflow Crack Segmentation Dataset](https://universe.roboflow.com/university-bswxt/crack-bphdr) is a comprehensive collection of 4029 static images designed specifically for transportation and public safety studies. It is ideal for tasks such as self-driving car model development and infrastructure maintenance. The dataset includes training, testing, and validation sets, aiding in accurate crack detection and segmentation.
### How do I train a model using the Crack Segmentation Dataset with Ultralytics YOLOv8?
To train an Ultralytics YOLOv8 model on the Crack Segmentation dataset, use the following code snippets. Detailed instructions and further parameters can be found on the model [Training](../../modes/train.md) page.
!!! Example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="crack-seg.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo segment train data=crack-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
### Why should I use the Crack Segmentation Dataset for my self-driving car project?
The Crack Segmentation Dataset is exceptionally suited for self-driving car projects due to its diverse collection of 4029 road and wall images, which provide a varied range of scenarios. This diversity enhances the accuracy and robustness of models trained for crack detection, crucial for maintaining road safety and ensuring timely infrastructure repairs.
### What unique features does Ultralytics YOLO offer for crack segmentation?
Ultralytics YOLO offers advanced real-time object detection, segmentation, and classification capabilities that make it ideal for crack segmentation tasks. Its ability to handle large datasets and complex scenarios ensures high accuracy and efficiency. For example, the model [Training](../../modes/train.md), [Predict](../../modes/predict.md), and [Export](../../modes/export.md) modes cover comprehensive functionalities from training to deployment.
### How do I cite the Roboflow Crack Segmentation Dataset in my research paper?
If you incorporate the Crack Segmentation Dataset into your research, please use the following BibTeX reference:
```bibtex
@misc{ crack-bphdr_dataset,
title = { crack Dataset },
type = { Open Source Dataset },
author = { University },
howpublished = { \url{ https://universe.roboflow.com/university-bswxt/crack-bphdr } },
url = { https://universe.roboflow.com/university-bswxt/crack-bphdr },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { dec },
note = { visited on 2024-01-23 },
}
```
This citation format ensures proper accreditation to the creators of the dataset and acknowledges its use in your research.

View file

@ -79,6 +79,7 @@ The `train` and `val` fields specify the paths to the directories containing the
# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
@ -149,3 +150,51 @@ To auto-annotate your dataset using the Ultralytics framework, you can use the `
The `auto_annotate` function takes the path to your images, along with optional arguments for specifying the pre-trained detection and [SAM segmentation models](../../models/sam.md), the device to run the models on, and the output directory for saving the annotated results.
By leveraging the power of pre-trained models, auto-annotation can significantly reduce the time and effort required for creating high-quality segmentation datasets. This feature is particularly useful for researchers and developers working with large image collections, as it allows them to focus on model development and evaluation rather than manual annotation.
## FAQ
### What dataset formats does Ultralytics YOLO support for instance segmentation?
Ultralytics YOLO supports several dataset formats for instance segmentation, with the primary format being its own Ultralytics YOLO format. Each image in your dataset needs a corresponding text file with object information segmented into multiple rows (one row per object), listing the class index and normalized bounding coordinates. For more detailed instructions on the YOLO dataset format, visit the [Instance Segmentation Datasets Overview](#instance-segmentation-datasets-overview).
### How can I convert COCO dataset annotations to the YOLO format?
Converting COCO format annotations to YOLO format is straightforward using Ultralytics tools. You can use the `convert_coco` function from the `ultralytics.data.converter` module:
```python
from ultralytics.data.converter import convert_coco
convert_coco(labels_dir="path/to/coco/annotations/", use_segments=True)
```
This script converts your COCO dataset annotations to the required YOLO format, making it suitable for training your YOLO models. For more details, refer to [Port or Convert Label Formats](#coco-dataset-format-to-yolo-format).
### How do I prepare a YAML file for training Ultralytics YOLO models?
To prepare a YAML file for training YOLO models with Ultralytics, you need to define the dataset paths and class names. Here's an example YAML configuration:
```yaml
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path')
val: images/val # val images (relative to 'path')
names:
0: person
1: bicycle
2: car
# ...
```
Ensure you update the paths and class names according to your dataset. For more information, check the [Dataset YAML Format](#dataset-yaml-format) section.
### What is the auto-annotation feature in Ultralytics YOLO?
Auto-annotation in Ultralytics YOLO allows you to generate segmentation annotations for your dataset using a pre-trained detection model. This significantly reduces the need for manual labeling. You can use the `auto_annotate` function as follows:
```python
from ultralytics.data.annotator import auto_annotate
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam_b.pt")
```
This function automates the annotation process, making it faster and more efficient. For more details, explore the [Auto-Annotation](#auto-annotation) section.

View file

@ -1,6 +1,6 @@
---
comments: true
description: Explore Roboflow's Package Segmentation Dataset. Optimize logistics and enhance vision models with curated images for package identification and sorting.
description: Explore the Roboflow Package Segmentation Dataset. Optimize logistics and enhance vision models with curated images for package identification and sorting.
keywords: Roboflow, Package Segmentation Dataset, computer vision, package identification, logistics, warehouse automation, segmentation models, training data
---
@ -90,3 +90,51 @@ If you integrate the crack segmentation dataset into your research or developmen
```
We express our gratitude to the Roboflow team for their efforts in creating and maintaining the Package Segmentation dataset, a valuable asset for logistics and research projects. For additional details about the Package Segmentation dataset and its creators, please visit the [Package Segmentation Dataset Page](https://universe.roboflow.com/factorypackage/factory_package).
## FAQ
### What is the Roboflow Package Segmentation Dataset and how can it help in computer vision projects?
The [Roboflow Package Segmentation Dataset](https://universe.roboflow.com/factorypackage/factory_package) is a curated collection of images tailored for tasks involving package segmentation. It includes diverse images of packages in various contexts, making it invaluable for training and evaluating segmentation models. This dataset is particularly useful for applications in logistics, warehouse automation, and any project requiring precise package analysis. It helps optimize logistics and enhance vision models for accurate package identification and sorting.
### How do I train an Ultralytics YOLOv8 model on the Package Segmentation Dataset?
You can train an Ultralytics YOLOv8n model using both Python and CLI methods. For Python, use the snippet below:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-seg.pt") # load a pretrained model
# Train the model
results = model.train(data="package-seg.yaml", epochs=100, imgsz=640)
```
For CLI:
```bash
# Start training from a pretrained *.pt model
yolo segment train data=package-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
Refer to the model [Training](../../modes/train.md) page for more details.
### What are the components of the Package Segmentation Dataset, and how is it structured?
The dataset is structured into three main components:
- **Training set**: Contains 1920 images with annotations.
- **Testing set**: Comprises 89 images with corresponding annotations.
- **Validation set**: Includes 188 images with annotations.
This structure ensures a balanced dataset for thorough model training, validation, and testing, enhancing the performance of segmentation algorithms.
### Why should I use Ultralytics YOLOv8 with the Package Segmentation Dataset?
Ultralytics YOLOv8 provides state-of-the-art accuracy and speed for real-time object detection and segmentation tasks. Using it with the Package Segmentation Dataset allows you to leverage YOLOv8's capabilities for precise package segmentation. This combination is especially beneficial for industries like logistics and warehouse automation, where accurate package identification is critical. For more information, check out our [page on YOLOv8 segmentation](https://docs.ultralytics.com/models/yolov8).
### How can I access and use the package-seg.yaml file for the Package Segmentation Dataset?
The `package-seg.yaml` file is hosted on Ultralytics' GitHub repository and contains essential information about the dataset's paths, classes, and configuration. You can download it from [here](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/package-seg.yaml). This file is crucial for configuring your models to utilize the dataset efficiently.
For more insights and practical examples, explore our [Usage](https://docs.ultralytics.com/usage/python/) section.