Add FAQs to Docs Datasets and Help sections (#14211)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
64862f1b69
commit
d5db9c916f
73 changed files with 3296 additions and 110 deletions
|
|
@ -128,21 +128,95 @@ Contributing a new dataset involves several steps to ensure that it aligns well
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from pathlib import Path
|
||||
```python
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.data.utils import compress_one_image
|
||||
from ultralytics.utils.downloads import zip_directory
|
||||
from ultralytics.data.utils import compress_one_image
|
||||
from ultralytics.utils.downloads import zip_directory
|
||||
|
||||
# Define dataset directory
|
||||
path = Path("path/to/dataset")
|
||||
# Define dataset directory
|
||||
path = Path("path/to/dataset")
|
||||
|
||||
# Optimize images in dataset (optional)
|
||||
for f in path.rglob("*.jpg"):
|
||||
compress_one_image(f)
|
||||
# Optimize images in dataset (optional)
|
||||
for f in path.rglob("*.jpg"):
|
||||
compress_one_image(f)
|
||||
|
||||
# Zip dataset into 'path/to/dataset.zip'
|
||||
zip_directory(path)
|
||||
```
|
||||
# Zip dataset into 'path/to/dataset.zip'
|
||||
zip_directory(path)
|
||||
```
|
||||
|
||||
By following these steps, you can contribute a new dataset that integrates well with Ultralytics' existing structure.
|
||||
|
||||
## FAQ
|
||||
|
||||
### What datasets does Ultralytics support for object detection?
|
||||
|
||||
Ultralytics supports a wide variety of datasets for object detection, including:
|
||||
- [COCO](detect/coco.md): A large-scale object detection, segmentation, and captioning dataset with 80 object categories.
|
||||
- [LVIS](detect/lvis.md): An extensive dataset with 1203 object categories, designed for more fine-grained object detection and segmentation.
|
||||
- [Argoverse](detect/argoverse.md): A dataset containing 3D tracking and motion forecasting data from urban environments with rich annotations.
|
||||
- [VisDrone](detect/visdrone.md): A dataset with object detection and multi-object tracking data from drone-captured imagery.
|
||||
- [SKU-110K](detect/sku-110k.md): Featuring dense object detection in retail environments with over 11K images.
|
||||
|
||||
These datasets facilitate training robust models for various object detection applications.
|
||||
|
||||
### How do I contribute a new dataset to Ultralytics?
|
||||
|
||||
Contributing a new dataset involves several steps:
|
||||
1. **Collect Images**: Gather images from public databases or personal collections.
|
||||
2. **Annotate Images**: Apply bounding boxes, segments, or keypoints, depending on the task.
|
||||
3. **Export Annotations**: Convert annotations into the YOLO `*.txt` format.
|
||||
4. **Organize Dataset**: Use the folder structure with `train/` and `val/` directories, each containing `images/` and `labels/` subdirectories.
|
||||
5. **Create a `data.yaml` File**: Include dataset descriptions, classes, and other relevant information.
|
||||
6. **Optimize Images (Optional)**: Reduce dataset size for efficiency.
|
||||
7. **Zip Dataset**: Compress the dataset into a zip file.
|
||||
8. **Document and PR**: Describe your dataset and submit a Pull Request following [Ultralytics Contribution Guidelines](https://docs.ultralytics.com/help/contributing).
|
||||
|
||||
Visit [Contribute New Datasets](#contribute-new-datasets) for a comprehensive guide.
|
||||
|
||||
### Why should I use Ultralytics Explorer for my dataset?
|
||||
|
||||
Ultralytics Explorer offers powerful features for dataset analysis, including:
|
||||
- **Embeddings Generation**: Create vector embeddings for images.
|
||||
- **Semantic Search**: Search for similar images using embeddings or AI.
|
||||
- **SQL Queries**: Run advanced SQL queries for detailed data analysis.
|
||||
- **Natural Language Search**: Search using plain language queries for ease of use.
|
||||
|
||||
Explore the [Ultralytics Explorer](explorer/index.md) for more information and to try the [GUI Demo](explorer/index.md).
|
||||
|
||||
### What are the unique features of Ultralytics YOLO models for computer vision?
|
||||
|
||||
Ultralytics YOLO models provide several unique features:
|
||||
- **Real-time Performance**: High-speed inference and training.
|
||||
- **Versatility**: Suitable for detection, segmentation, classification, and pose estimation tasks.
|
||||
- **Pretrained Models**: Access to high-performing, pretrained models for various applications.
|
||||
- **Extensive Community Support**: Active community and comprehensive documentation for troubleshooting and development.
|
||||
|
||||
Discover more about YOLO on the [Ultralytics YOLO](https://www.ultralytics.com/yolo) page.
|
||||
|
||||
### How can I optimize and zip a dataset using Ultralytics tools?
|
||||
|
||||
To optimize and zip a dataset using Ultralytics tools, follow this example code:
|
||||
|
||||
!!! Example "Optimize and Zip a Dataset"
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.data.utils import compress_one_image
|
||||
from ultralytics.utils.downloads import zip_directory
|
||||
|
||||
# Define dataset directory
|
||||
path = Path("path/to/dataset")
|
||||
|
||||
# Optimize images in dataset (optional)
|
||||
for f in path.rglob("*.jpg"):
|
||||
compress_one_image(f)
|
||||
|
||||
# Zip dataset into 'path/to/dataset.zip'
|
||||
zip_directory(path)
|
||||
```
|
||||
|
||||
Learn more on how to [Optimize and Zip a Dataset](#example-code-to-optimize-and-zip-a-dataset).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue