Add FAQs to Docs Datasets and Help sections (#14211)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
64862f1b69
commit
d5db9c916f
73 changed files with 3296 additions and 110 deletions
|
|
@ -128,3 +128,91 @@ If you use the Roboflow 100 dataset in your research or development work, please
|
|||
Our thanks go to the Roboflow team and all the contributors for their hard work in creating and sustaining the Roboflow 100 dataset.
|
||||
|
||||
If you are interested in exploring more datasets to enhance your object detection and machine learning projects, feel free to visit [our comprehensive dataset collection](../index.md).
|
||||
|
||||
## FAQ
|
||||
|
||||
### What is the Roboflow 100 dataset, and why is it significant for object detection?
|
||||
|
||||
The **Roboflow 100** dataset, developed by [Roboflow](https://roboflow.com/?ref=ultralytics) and sponsored by Intel, is a crucial [object detection](../../tasks/detect.md) benchmark. It features 100 diverse datasets from over 90,000 public datasets, covering domains such as healthcare, aerial imagery, and video games. This diversity ensures that models can adapt to various real-world scenarios, enhancing their robustness and performance.
|
||||
|
||||
### How can I use the Roboflow 100 dataset for benchmarking my object detection models?
|
||||
|
||||
To use the Roboflow 100 dataset for benchmarking, you can implement the RF100Benchmark class from the Ultralytics library. Here's a brief example:
|
||||
|
||||
!!! Example "Benchmarking example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.utils.benchmarks import RF100Benchmark
|
||||
|
||||
# Initialize RF100Benchmark and set API key
|
||||
benchmark = RF100Benchmark()
|
||||
benchmark.set_key(api_key="YOUR_ROBOFLOW_API_KEY")
|
||||
|
||||
# Parse dataset and define file paths
|
||||
names, cfg_yamls = benchmark.parse_dataset()
|
||||
val_log_file = Path("ultralytics-benchmarks") / "validation.txt"
|
||||
eval_log_file = Path("ultralytics-benchmarks") / "evaluation.txt"
|
||||
|
||||
# Run benchmarks on each dataset in RF100
|
||||
for ind, path in enumerate(cfg_yamls):
|
||||
path = Path(path)
|
||||
if path.exists():
|
||||
# Fix YAML file and run training
|
||||
benchmark.fix_yaml(str(path))
|
||||
os.system(f"yolo detect train data={path} model=yolov8s.pt epochs=1 batch=16")
|
||||
|
||||
# Run validation and evaluate
|
||||
os.system(f"yolo detect val data={path} model=runs/detect/train/weights/best.pt > {val_log_file} 2>&1")
|
||||
benchmark.evaluate(str(path), str(val_log_file), str(eval_log_file), ind)
|
||||
|
||||
# Remove 'runs' directory
|
||||
runs_dir = Path.cwd() / "runs"
|
||||
shutil.rmtree(runs_dir)
|
||||
else:
|
||||
print("YAML file path does not exist")
|
||||
continue
|
||||
|
||||
print("RF100 Benchmarking completed!")
|
||||
```
|
||||
|
||||
### Which domains are covered by the Roboflow 100 dataset?
|
||||
|
||||
The **Roboflow 100** dataset spans seven domains, each providing unique challenges and applications for object detection models:
|
||||
|
||||
1. **Aerial**: 7 datasets, 9,683 images, 24 classes
|
||||
2. **Video Games**: 7 datasets, 11,579 images, 88 classes
|
||||
3. **Microscopic**: 11 datasets, 13,378 images, 28 classes
|
||||
4. **Underwater**: 5 datasets, 18,003 images, 39 classes
|
||||
5. **Documents**: 8 datasets, 24,813 images, 90 classes
|
||||
6. **Electromagnetic**: 12 datasets, 36,381 images, 41 classes
|
||||
7. **Real World**: 50 datasets, 110,615 images, 495 classes
|
||||
|
||||
This setup allows for extensive and varied testing of models across different real-world applications.
|
||||
|
||||
### How do I access and download the Roboflow 100 dataset?
|
||||
|
||||
The **Roboflow 100** dataset is accessible on [GitHub](https://github.com/roboflow/roboflow-100-benchmark) and [Roboflow Universe](https://universe.roboflow.com/roboflow-100). You can download the entire dataset from GitHub or select individual datasets on Roboflow Universe using the export button.
|
||||
|
||||
### What should I include when citing the Roboflow 100 dataset in my research?
|
||||
|
||||
When using the Roboflow 100 dataset in your research, ensure to properly cite it. Here is the recommended citation:
|
||||
|
||||
!!! Quote
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
```bibtex
|
||||
@misc{2211.13523,
|
||||
Author = {Floriana Ciaglia and Francesco Saverio Zuppichini and Paul Guerrie and Mark McQuade and Jacob Solawetz},
|
||||
Title = {Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark},
|
||||
Eprint = {arXiv:2211.13523},
|
||||
}
|
||||
```
|
||||
|
||||
For more details, you can refer to our [comprehensive dataset collection](../index.md).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue