Add FAQs to Docs Datasets and Help sections (#14211)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
64862f1b69
commit
d5db9c916f
73 changed files with 3296 additions and 110 deletions
|
|
@ -61,6 +61,7 @@ Here's how you can use these formats to train your model:
|
|||
# Train the model
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
|
|
@ -111,3 +112,76 @@ You can easily convert labels from the popular COCO dataset format to the YOLO f
|
|||
This conversion tool can be used to convert the COCO dataset or any dataset in the COCO format to the Ultralytics YOLO format.
|
||||
|
||||
Remember to double-check if the dataset you want to use is compatible with your model and follows the necessary format conventions. Properly formatted datasets are crucial for training successful object detection models.
|
||||
|
||||
## FAQ
|
||||
|
||||
### What is the Ultralytics YOLO dataset format and how to structure it?
|
||||
|
||||
The Ultralytics YOLO format is a structured configuration for defining datasets in your training projects. It involves setting paths to your training, validation, and testing images and corresponding labels. For example:
|
||||
|
||||
```yaml
|
||||
path: ../datasets/coco8 # dataset root directory
|
||||
train: images/train # training images (relative to 'path')
|
||||
val: images/val # validation images (relative to 'path')
|
||||
test: # optional test images
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
# ...
|
||||
```
|
||||
|
||||
Labels are saved in `*.txt` files with one file per image, formatted as `class x_center y_center width height` with normalized coordinates. For a detailed guide, see the [COCO8 dataset example](coco8.md).
|
||||
|
||||
### How do I convert a COCO dataset to the YOLO format?
|
||||
|
||||
You can convert a COCO dataset to the YOLO format using the Ultralytics conversion tools. Here's a quick method:
|
||||
|
||||
```python
|
||||
from ultralytics.data.converter import convert_coco
|
||||
|
||||
convert_coco(labels_dir="path/to/coco/annotations/")
|
||||
```
|
||||
|
||||
This code will convert your COCO annotations to YOLO format, enabling seamless integration with Ultralytics YOLO models. For additional details, visit the [Port or Convert Label Formats](#port-or-convert-label-formats) section.
|
||||
|
||||
### Which datasets are supported by Ultralytics YOLO for object detection?
|
||||
|
||||
Ultralytics YOLO supports a wide range of datasets, including:
|
||||
|
||||
- [Argoverse](argoverse.md)
|
||||
- [COCO](coco.md)
|
||||
- [LVIS](lvis.md)
|
||||
- [COCO8](coco8.md)
|
||||
- [Global Wheat 2020](globalwheat2020.md)
|
||||
- [Objects365](objects365.md)
|
||||
- [OpenImagesV7](open-images-v7.md)
|
||||
|
||||
Each dataset page provides detailed information on the structure and usage tailored for efficient YOLOv8 training. Explore the full list in the [Supported Datasets](#supported-datasets) section.
|
||||
|
||||
### How do I start training a YOLOv8 model using my dataset?
|
||||
|
||||
To start training a YOLOv8 model, ensure your dataset is formatted correctly and the paths are defined in a YAML file. Use the following script to begin training:
|
||||
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt") # Load a pretrained model
|
||||
results = model.train(data="path/to/your_dataset.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect train data=path/to/your_dataset.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
Refer to the [Usage](#usage) section for more details on utilizing different modes, including CLI commands.
|
||||
|
||||
### Where can I find practical examples of using Ultralytics YOLO for object detection?
|
||||
|
||||
Ultralytics provides numerous examples and practical guides for using YOLOv8 in diverse applications. For a comprehensive overview, visit the [Ultralytics Blog](https://www.ultralytics.com/blog) where you can find case studies, detailed tutorials, and community stories showcasing object detection, segmentation, and more with YOLOv8. For specific examples, check the [Usage](../../modes/predict.md) section in the documentation.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue