Add FAQs to Docs Datasets and Help sections (#14211)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-07-04 20:42:31 +02:00 committed by GitHub
parent 64862f1b69
commit d5db9c916f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
73 changed files with 3296 additions and 110 deletions

View file

@ -111,3 +111,83 @@ These smaller versions of the dataset allow for rapid iterations during the deve
## Citations and Acknowledgments
If you use the ImageNette dataset in your research or development work, please acknowledge it appropriately. For more information about the ImageNette dataset, visit the [ImageNette dataset GitHub page](https://github.com/fastai/imagenette).
## FAQ
### What is the ImageNette dataset?
The [ImageNette dataset](https://github.com/fastai/imagenette) is a simplified subset of the larger [ImageNet dataset](https://www.image-net.org/), featuring only 10 easily distinguishable classes such as tench, English springer, and French horn. It was created to offer a more manageable dataset for efficient training and evaluation of image classification models. This dataset is particularly useful for quick software development and educational purposes in machine learning and computer vision.
### How can I use the ImageNette dataset for training a YOLO model?
To train a YOLO model on the ImageNette dataset for 100 epochs, you can use the following commands. Make sure to have the Ultralytics YOLO environment set up.
!!! Example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="imagenette", epochs=100, imgsz=224)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
```
For more details, see the [Training](../../modes/train.md) documentation page.
### Why should I use ImageNette for image classification tasks?
The ImageNette dataset is advantageous for several reasons:
- **Quick and Simple**: It contains only 10 classes, making it less complex and time-consuming compared to larger datasets.
- **Educational Use**: Ideal for learning and teaching the basics of image classification since it requires less computational power and time.
- **Versatility**: Widely used to train and benchmark various machine learning models, especially in image classification.
For more details on model training and dataset management, explore the [Dataset Structure](#dataset-structure) section.
### Can the ImageNette dataset be used with different image sizes?
Yes, the ImageNette dataset is also available in two resized versions: ImageNette160 and ImageNette320. These versions help in faster prototyping and are especially useful when computational resources are limited.
!!! Example "Train Example with ImageNette160"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-cls.pt")
# Train the model with ImageNette160
results = model.train(data="imagenette160", epochs=100, imgsz=160)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model with ImageNette160
yolo detect train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
```
For more information, refer to [Training with ImageNette160 and ImageNette320](#imagenette160-and-imagenette320).
### What are some practical applications of the ImageNette dataset?
The ImageNette dataset is extensively used in:
- **Educational Settings**: To educate beginners in machine learning and computer vision.
- **Software Development**: For rapid prototyping and development of image classification models.
- **Deep Learning Research**: To evaluate and benchmark the performance of various deep learning models, especially Convolutional Neural Networks (CNNs).
Explore the [Applications](#applications) section for detailed use cases.