Add FAQs to Docs Datasets and Help sections (#14211)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-07-04 20:42:31 +02:00 committed by GitHub
parent 64862f1b69
commit d5db9c916f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
73 changed files with 3296 additions and 110 deletions

View file

@ -78,3 +78,53 @@ If you use the CIFAR-100 dataset in your research or development work, please ci
```
We would like to acknowledge Alex Krizhevsky for creating and maintaining the CIFAR-100 dataset as a valuable resource for the machine learning and computer vision research community. For more information about the CIFAR-100 dataset and its creator, visit the [CIFAR-100 dataset website](https://www.cs.toronto.edu/~kriz/cifar.html).
## FAQ
### What is the CIFAR-100 dataset and why is it significant?
The [CIFAR-100 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) is a large collection of 60,000 32x32 color images classified into 100 classes. Developed by the Canadian Institute For Advanced Research (CIFAR), it provides a challenging dataset ideal for complex machine learning and computer vision tasks. Its significance lies in the diversity of classes and the small size of the images, making it a valuable resource for training and testing deep learning models, like Convolutional Neural Networks (CNNs), using frameworks such as Ultralytics YOLO.
### How do I train a YOLO model on the CIFAR-100 dataset?
You can train a YOLO model on the CIFAR-100 dataset using either Python or CLI commands. Here's how:
!!! Example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="cifar100", epochs=100, imgsz=32)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo detect train data=cifar100 model=yolov8n-cls.pt epochs=100 imgsz=32
```
For a comprehensive list of available arguments, please refer to the model [Training](../../modes/train.md) page.
### What are the primary applications of the CIFAR-100 dataset?
The CIFAR-100 dataset is extensively used in training and evaluating deep learning models for image classification. Its diverse set of 100 classes, grouped into 20 coarse categories, provides a challenging environment for testing algorithms such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and various other machine learning approaches. This dataset is a key resource in research and development within machine learning and computer vision fields.
### How is the CIFAR-100 dataset structured?
The CIFAR-100 dataset is split into two main subsets:
1. **Training Set**: Contains 50,000 images used for training machine learning models.
2. **Testing Set**: Consists of 10,000 images used for testing and benchmarking the trained models.
Each of the 100 classes contains 600 images, with 500 images for training and 100 for testing, making it uniquely suited for rigorous academic and industrial research.
### Where can I find sample images and annotations from the CIFAR-100 dataset?
The CIFAR-100 dataset includes a variety of color images of various objects, making it a structured dataset for image classification tasks. You can refer to the documentation page to see [sample images and annotations](#sample-images-and-annotations). These examples highlight the dataset's diversity and complexity, important for training robust image classification models.