[Docs]: Add customization tutorial and address feedback (#155)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
c985eaba0d
commit
d387359f74
8 changed files with 133 additions and 74 deletions
|
|
@ -46,7 +46,7 @@ include train, val, and predict.
|
|||
| model | null | Set the model. Format can differ for task type. Supports `model_name`, `model.yaml` & `model.pt` |
|
||||
| data | null | Set the data. Format can differ for task type. Supports `data.yaml`, `data_folder`, `dataset_name` |
|
||||
|
||||
### Training settings
|
||||
### Training
|
||||
|
||||
Training settings for YOLO models refer to the various hyperparameters and configurations used to train the model on a
|
||||
dataset. These settings can affect the model's performance, speed, and accuracy. Some common YOLO training settings
|
||||
|
|
@ -88,7 +88,7 @@ task.
|
|||
| mask_ratio | 4 | **Segmentation**: Set mask downsampling |
|
||||
| dropout | `False` | **Classification**: Use dropout while training |
|
||||
|
||||
### Prediction Settings
|
||||
### Prediction
|
||||
|
||||
Prediction settings for YOLO models refer to the various hyperparameters and configurations used to make predictions
|
||||
with the model on new data. These settings can affect the model's performance, speed, and accuracy. Some common YOLO
|
||||
|
|
@ -114,7 +114,7 @@ given task.
|
|||
| agnostic_nms | `False` | Class-agnostic NMS |
|
||||
| retina_masks | `False` | **Segmentation:** High resolution masks |
|
||||
|
||||
### Validation settings
|
||||
### Validation
|
||||
|
||||
Validation settings for YOLO models refer to the various hyperparameters and configurations used to
|
||||
evaluate the model's performance on a validation dataset. These settings can affect the model's performance, speed, and
|
||||
|
|
@ -147,7 +147,7 @@ the specific task the model is being used for and the requirements or constraint
|
|||
It is important to carefully consider and configure these settings to ensure that the exported model is optimized for
|
||||
the intended use case and can be used effectively in the target environment.
|
||||
|
||||
### Augmentation settings
|
||||
### Augmentation
|
||||
|
||||
Augmentation settings for YOLO models refer to the various transformations and modifications
|
||||
applied to the training data to increase the diversity and size of the dataset. These settings can affect the model's
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue