Refactor TFLite example. Support FP32, Fp16, INT8 models (#17317)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
788387831a
commit
d28caa9a58
5 changed files with 277 additions and 374 deletions
|
|
@ -18,7 +18,7 @@ This directory features a collection of real-world applications and walkthroughs
|
|||
| [YOLOv8 Region Counter](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-Region-Counter/yolov8_region_counter.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
|
||||
| [YOLOv8 Segmentation ONNXRuntime Python](./YOLOv8-Segmentation-ONNXRuntime-Python) | Python/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
|
||||
| [YOLOv8 LibTorch CPP](./YOLOv8-LibTorch-CPP-Inference) | C++/LibTorch | [Myyura](https://github.com/Myyura) |
|
||||
| [YOLOv8 OpenCV INT8 TFLite Python](./YOLOv8-OpenCV-int8-tflite-Python) | Python | [Wamiq Raza](https://github.com/wamiqraza) |
|
||||
| [YOLOv8 OpenCV INT8 TFLite Python](./YOLOv8-TFLite-Python) | Python | [Wamiq Raza](https://github.com/wamiqraza) |
|
||||
| [YOLOv8 All Tasks ONNXRuntime Rust](./YOLOv8-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
|
||||
| [YOLOv8 OpenVINO CPP](./YOLOv8-OpenVINO-CPP-Inference) | C++/OpenVINO | [Erlangga Yudi Pradana](https://github.com/rlggyp) |
|
||||
|
||||
|
|
|
|||
|
|
@ -1,65 +0,0 @@
|
|||
# YOLOv8 - Int8-TFLite Runtime
|
||||
|
||||
Welcome to the YOLOv8 Int8 TFLite Runtime for efficient and optimized object detection project. This README provides comprehensive instructions for installing and using our YOLOv8 implementation.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure a smooth setup by following these steps to install necessary dependencies.
|
||||
|
||||
### Installing Required Dependencies
|
||||
|
||||
Install all required dependencies with this simple command:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Installing `tflite-runtime`
|
||||
|
||||
To load TFLite models, install the `tflite-runtime` package using:
|
||||
|
||||
```bash
|
||||
pip install tflite-runtime
|
||||
```
|
||||
|
||||
### Installing `tensorflow-gpu` (For NVIDIA GPU Users)
|
||||
|
||||
Leverage GPU acceleration with NVIDIA GPUs by installing `tensorflow-gpu`:
|
||||
|
||||
```bash
|
||||
pip install tensorflow-gpu
|
||||
```
|
||||
|
||||
**Note:** Ensure you have compatible GPU drivers installed on your system.
|
||||
|
||||
### Installing `tensorflow` (CPU Version)
|
||||
|
||||
For CPU usage or non-NVIDIA GPUs, install TensorFlow with:
|
||||
|
||||
```bash
|
||||
pip install tensorflow
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Follow these instructions to run YOLOv8 after successful installation.
|
||||
|
||||
Convert the YOLOv8 model to Int8 TFLite format:
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt imgsz=640 format=tflite int8
|
||||
```
|
||||
|
||||
Locate the Int8 TFLite model in `yolov8n_saved_model`. Choose `best_full_integer_quant` or verify quantization at [Netron](https://netron.app/). Then, execute the following in your terminal:
|
||||
|
||||
```bash
|
||||
python main.py --model yolov8n_full_integer_quant.tflite --img image.jpg --conf-thres 0.5 --iou-thres 0.5
|
||||
```
|
||||
|
||||
Replace `best_full_integer_quant.tflite` with your model file's path, `image.jpg` with your input image, and adjust the confidence (conf-thres) and IoU thresholds (iou-thres) as necessary.
|
||||
|
||||
### Output
|
||||
|
||||
The output is displayed as annotated images, showcasing the model's detection capabilities:
|
||||
|
||||

|
||||
|
|
@ -1,308 +0,0 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import argparse
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from tflite_runtime import interpreter as tflite
|
||||
|
||||
from ultralytics.utils import ASSETS, yaml_load
|
||||
from ultralytics.utils.checks import check_yaml
|
||||
|
||||
# Declare as global variables, can be updated based trained model image size
|
||||
img_width = 640
|
||||
img_height = 640
|
||||
|
||||
|
||||
class LetterBox:
|
||||
"""Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
|
||||
|
||||
def __init__(
|
||||
self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32
|
||||
):
|
||||
"""Initializes LetterBox with parameters for reshaping and transforming image while maintaining aspect ratio."""
|
||||
self.new_shape = new_shape
|
||||
self.auto = auto
|
||||
self.scaleFill = scaleFill
|
||||
self.scaleup = scaleup
|
||||
self.stride = stride
|
||||
self.center = center # Put the image in the middle or top-left
|
||||
|
||||
def __call__(self, labels=None, image=None):
|
||||
"""Return updated labels and image with added border."""
|
||||
if labels is None:
|
||||
labels = {}
|
||||
img = labels.get("img") if image is None else image
|
||||
shape = img.shape[:2] # current shape [height, width]
|
||||
new_shape = labels.pop("rect_shape", self.new_shape)
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
if not self.scaleup: # only scale down, do not scale up (for better val mAP)
|
||||
r = min(r, 1.0)
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
if self.auto: # minimum rectangle
|
||||
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
|
||||
elif self.scaleFill: # stretch
|
||||
dw, dh = 0.0, 0.0
|
||||
new_unpad = (new_shape[1], new_shape[0])
|
||||
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||
|
||||
if self.center:
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
|
||||
img = cv2.copyMakeBorder(
|
||||
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
|
||||
) # add border
|
||||
if labels.get("ratio_pad"):
|
||||
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation
|
||||
|
||||
if len(labels):
|
||||
labels = self._update_labels(labels, ratio, dw, dh)
|
||||
labels["img"] = img
|
||||
labels["resized_shape"] = new_shape
|
||||
return labels
|
||||
else:
|
||||
return img
|
||||
|
||||
def _update_labels(self, labels, ratio, padw, padh):
|
||||
"""Update labels."""
|
||||
labels["instances"].convert_bbox(format="xyxy")
|
||||
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
|
||||
labels["instances"].scale(*ratio)
|
||||
labels["instances"].add_padding(padw, padh)
|
||||
return labels
|
||||
|
||||
|
||||
class Yolov8TFLite:
|
||||
"""Class for performing object detection using YOLOv8 model converted to TensorFlow Lite format."""
|
||||
|
||||
def __init__(self, tflite_model, input_image, confidence_thres, iou_thres):
|
||||
"""
|
||||
Initializes an instance of the Yolov8TFLite class.
|
||||
|
||||
Args:
|
||||
tflite_model: Path to the TFLite model.
|
||||
input_image: Path to the input image.
|
||||
confidence_thres: Confidence threshold for filtering detections.
|
||||
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
|
||||
"""
|
||||
self.tflite_model = tflite_model
|
||||
self.input_image = input_image
|
||||
self.confidence_thres = confidence_thres
|
||||
self.iou_thres = iou_thres
|
||||
|
||||
# Load the class names from the COCO dataset
|
||||
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
|
||||
|
||||
# Generate a color palette for the classes
|
||||
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
|
||||
|
||||
def draw_detections(self, img, box, score, class_id):
|
||||
"""
|
||||
Draws bounding boxes and labels on the input image based on the detected objects.
|
||||
|
||||
Args:
|
||||
img: The input image to draw detections on.
|
||||
box: Detected bounding box.
|
||||
score: Corresponding detection score.
|
||||
class_id: Class ID for the detected object.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# Extract the coordinates of the bounding box
|
||||
x1, y1, w, h = box
|
||||
|
||||
# Retrieve the color for the class ID
|
||||
color = self.color_palette[class_id]
|
||||
|
||||
# Draw the bounding box on the image
|
||||
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
|
||||
|
||||
# Create the label text with class name and score
|
||||
label = f"{self.classes[class_id]}: {score:.2f}"
|
||||
|
||||
# Calculate the dimensions of the label text
|
||||
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
|
||||
# Calculate the position of the label text
|
||||
label_x = x1
|
||||
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
|
||||
|
||||
# Draw a filled rectangle as the background for the label text
|
||||
cv2.rectangle(
|
||||
img,
|
||||
(int(label_x), int(label_y - label_height)),
|
||||
(int(label_x + label_width), int(label_y + label_height)),
|
||||
color,
|
||||
cv2.FILLED,
|
||||
)
|
||||
|
||||
# Draw the label text on the image
|
||||
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
|
||||
def preprocess(self):
|
||||
"""
|
||||
Preprocesses the input image before performing inference.
|
||||
|
||||
Returns:
|
||||
image_data: Preprocessed image data ready for inference.
|
||||
"""
|
||||
# Read the input image using OpenCV
|
||||
self.img = cv2.imread(self.input_image)
|
||||
|
||||
print("image before", self.img)
|
||||
# Get the height and width of the input image
|
||||
self.img_height, self.img_width = self.img.shape[:2]
|
||||
|
||||
letterbox = LetterBox(new_shape=[img_width, img_height], auto=False, stride=32)
|
||||
image = letterbox(image=self.img)
|
||||
image = [image]
|
||||
image = np.stack(image)
|
||||
image = image[..., ::-1].transpose((0, 3, 1, 2))
|
||||
img = np.ascontiguousarray(image)
|
||||
# n, h, w, c
|
||||
image = img.astype(np.float32)
|
||||
return image / 255
|
||||
|
||||
def postprocess(self, input_image, output):
|
||||
"""
|
||||
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
|
||||
|
||||
Args:
|
||||
input_image (numpy.ndarray): The input image.
|
||||
output (numpy.ndarray): The output of the model.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: The input image with detections drawn on it.
|
||||
"""
|
||||
# Transpose predictions outside the loop
|
||||
output = [np.transpose(pred) for pred in output]
|
||||
|
||||
boxes = []
|
||||
scores = []
|
||||
class_ids = []
|
||||
|
||||
# Vectorize extraction of bounding boxes, scores, and class IDs
|
||||
for pred in output:
|
||||
x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
|
||||
x1 = x - w / 2
|
||||
y1 = y - h / 2
|
||||
boxes.extend(np.column_stack([x1, y1, w, h]))
|
||||
|
||||
# Argmax and score extraction for all predictions at once
|
||||
idx = np.argmax(pred[:, 4:], axis=1)
|
||||
scores.extend(pred[np.arange(pred.shape[0]), idx + 4])
|
||||
class_ids.extend(idx)
|
||||
|
||||
# Precompute gain and pad once
|
||||
img_height, img_width = input_image.shape[:2]
|
||||
gain = min(img_width / self.img_width, img_height / self.img_height)
|
||||
pad = (
|
||||
round((img_width - self.img_width * gain) / 2 - 0.1),
|
||||
round((img_height - self.img_height * gain) / 2 - 0.1),
|
||||
)
|
||||
|
||||
# Non-Maximum Suppression (NMS) in one go
|
||||
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
|
||||
|
||||
# Process selected indices
|
||||
for i in indices.flatten():
|
||||
box = boxes[i]
|
||||
box[0] = (box[0] - pad[0]) / gain
|
||||
box[1] = (box[1] - pad[1]) / gain
|
||||
box[2] = box[2] / gain
|
||||
box[3] = box[3] / gain
|
||||
|
||||
score = scores[i]
|
||||
class_id = class_ids[i]
|
||||
|
||||
if score > 0.25:
|
||||
# Draw the detection on the input image
|
||||
self.draw_detections(input_image, box, score, class_id)
|
||||
|
||||
return input_image
|
||||
|
||||
def main(self):
|
||||
"""
|
||||
Performs inference using a TFLite model and returns the output image with drawn detections.
|
||||
|
||||
Returns:
|
||||
output_img: The output image with drawn detections.
|
||||
"""
|
||||
# Create an interpreter for the TFLite model
|
||||
interpreter = tflite.Interpreter(model_path=self.tflite_model)
|
||||
self.model = interpreter
|
||||
interpreter.allocate_tensors()
|
||||
|
||||
# Get the model inputs
|
||||
input_details = interpreter.get_input_details()
|
||||
output_details = interpreter.get_output_details()
|
||||
|
||||
# Store the shape of the input for later use
|
||||
input_shape = input_details[0]["shape"]
|
||||
self.input_width = input_shape[1]
|
||||
self.input_height = input_shape[2]
|
||||
|
||||
# Preprocess the image data
|
||||
img_data = self.preprocess()
|
||||
img_data = img_data
|
||||
# img_data = img_data.cpu().numpy()
|
||||
# Set the input tensor to the interpreter
|
||||
print(input_details[0]["index"])
|
||||
print(img_data.shape)
|
||||
img_data = img_data.transpose((0, 2, 3, 1))
|
||||
|
||||
scale, zero_point = input_details[0]["quantization"]
|
||||
img_data_int8 = (img_data / scale + zero_point).astype(np.int8)
|
||||
interpreter.set_tensor(input_details[0]["index"], img_data_int8)
|
||||
|
||||
# Run inference
|
||||
interpreter.invoke()
|
||||
|
||||
# Get the output tensor from the interpreter
|
||||
output = interpreter.get_tensor(output_details[0]["index"])
|
||||
scale, zero_point = output_details[0]["quantization"]
|
||||
output = (output.astype(np.float32) - zero_point) * scale
|
||||
|
||||
output[:, [0, 2]] *= img_width
|
||||
output[:, [1, 3]] *= img_height
|
||||
print(output)
|
||||
# Perform post-processing on the outputs to obtain output image.
|
||||
return self.postprocess(self.img, output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create an argument parser to handle command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model."
|
||||
)
|
||||
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
|
||||
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
|
||||
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Create an instance of the Yolov8TFLite class with the specified arguments
|
||||
detection = Yolov8TFLite(args.model, args.img, args.conf_thres, args.iou_thres)
|
||||
|
||||
# Perform object detection and obtain the output image
|
||||
output_image = detection.main()
|
||||
|
||||
# Display the output image in a window
|
||||
cv2.imshow("Output", output_image)
|
||||
|
||||
# Wait for a key press to exit
|
||||
cv2.waitKey(0)
|
||||
55
examples/YOLOv8-TFLite-Python/README.md
Normal file
55
examples/YOLOv8-TFLite-Python/README.md
Normal file
|
|
@ -0,0 +1,55 @@
|
|||
# YOLOv8 - TFLite Runtime
|
||||
|
||||
This example shows how to run inference with YOLOv8 TFLite model. It supports FP32, FP16 and INT8 models.
|
||||
|
||||
## Installation
|
||||
|
||||
### Installing `tflite-runtime`
|
||||
|
||||
To load TFLite models, install the `tflite-runtime` package using:
|
||||
|
||||
```bash
|
||||
pip install tflite-runtime
|
||||
```
|
||||
|
||||
### Installing `tensorflow-gpu` (For NVIDIA GPU Users)
|
||||
|
||||
Leverage GPU acceleration with NVIDIA GPUs by installing `tensorflow-gpu`:
|
||||
|
||||
```bash
|
||||
pip install tensorflow-gpu
|
||||
```
|
||||
|
||||
**Note:** Ensure you have compatible GPU drivers installed on your system.
|
||||
|
||||
### Installing `tensorflow` (CPU Version)
|
||||
|
||||
For CPU usage or non-NVIDIA GPUs, install TensorFlow with:
|
||||
|
||||
```bash
|
||||
pip install tensorflow
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Follow these instructions to run YOLOv8 after successful installation.
|
||||
|
||||
Convert the YOLOv8 model to TFLite format:
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt imgsz=640 format=tflite int8
|
||||
```
|
||||
|
||||
Locate the TFLite model in `yolov8n_saved_model`. Then, execute the following in your terminal:
|
||||
|
||||
```bash
|
||||
python main.py --model yolov8n_full_integer_quant.tflite --img image.jpg --conf 0.25 --iou 0.45 --metadata "metadata.yaml"
|
||||
```
|
||||
|
||||
Replace `best_full_integer_quant.tflite` with the TFLite model path, `image.jpg` with the input image path, `metadata.yaml` with the one generated by `ultralytics` during export, and adjust the confidence (conf) and IoU thresholds (iou) as necessary.
|
||||
|
||||
### Output
|
||||
|
||||
The output would show the detections along with the class labels and confidences of each detected object.
|
||||
|
||||

|
||||
221
examples/YOLOv8-TFLite-Python/main.py
Normal file
221
examples/YOLOv8-TFLite-Python/main.py
Normal file
|
|
@ -0,0 +1,221 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import argparse
|
||||
from typing import Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import yaml
|
||||
|
||||
from ultralytics.utils import ASSETS
|
||||
|
||||
try:
|
||||
from tflite_runtime.interpreter import Interpreter
|
||||
except ImportError:
|
||||
import tensorflow as tf
|
||||
|
||||
Interpreter = tf.lite.Interpreter
|
||||
|
||||
|
||||
class YOLOv8TFLite:
|
||||
"""
|
||||
YOLOv8TFLite.
|
||||
|
||||
A class for performing object detection using the YOLOv8 model with TensorFlow Lite.
|
||||
|
||||
Attributes:
|
||||
model (str): Path to the TensorFlow Lite model file.
|
||||
conf (float): Confidence threshold for filtering detections.
|
||||
iou (float): Intersection over Union threshold for non-maximum suppression.
|
||||
metadata (Optional[str]): Path to the metadata file, if any.
|
||||
|
||||
Methods:
|
||||
detect(img_path: str) -> np.ndarray:
|
||||
Performs inference and returns the output image with drawn detections.
|
||||
"""
|
||||
|
||||
def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None):
|
||||
"""
|
||||
Initializes an instance of the YOLOv8TFLite class.
|
||||
|
||||
Args:
|
||||
model (str): Path to the TFLite model.
|
||||
conf (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
|
||||
iou (float, optional): IoU (Intersection over Union) threshold for non-maximum suppression. Defaults to 0.45.
|
||||
metadata (Union[str, None], optional): Path to the metadata file or None if not used. Defaults to None.
|
||||
"""
|
||||
self.conf = conf
|
||||
self.iou = iou
|
||||
if metadata is None:
|
||||
self.classes = {i: i for i in range(1000)}
|
||||
else:
|
||||
with open(metadata) as f:
|
||||
self.classes = yaml.safe_load(f)["names"]
|
||||
np.random.seed(42)
|
||||
self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3))
|
||||
|
||||
self.model = Interpreter(model_path=model)
|
||||
self.model.allocate_tensors()
|
||||
|
||||
input_details = self.model.get_input_details()[0]
|
||||
|
||||
self.in_width, self.in_height = input_details["shape"][1:3]
|
||||
self.in_index = input_details["index"]
|
||||
self.in_scale, self.in_zero_point = input_details["quantization"]
|
||||
self.int8 = input_details["dtype"] == np.int8
|
||||
|
||||
output_details = self.model.get_output_details()[0]
|
||||
self.out_index = output_details["index"]
|
||||
self.out_scale, self.out_zero_point = output_details["quantization"]
|
||||
|
||||
def letterbox(self, img: np.ndarray, new_shape: Tuple = (640, 640)) -> Tuple[np.ndarray, Tuple[float, float]]:
|
||||
"""Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
|
||||
shape = img.shape[:2] # current shape [height, width]
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
|
||||
# Compute padding
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
|
||||
|
||||
return img, (top / img.shape[0], left / img.shape[1])
|
||||
|
||||
def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None:
|
||||
"""
|
||||
Draws bounding boxes and labels on the input image based on the detected objects.
|
||||
|
||||
Args:
|
||||
img (np.ndarray): The input image to draw detections on.
|
||||
box (np.ndarray): Detected bounding box in the format [x1, y1, width, height].
|
||||
score (np.float32): Corresponding detection score.
|
||||
class_id (int): Class ID for the detected object.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
x1, y1, w, h = box
|
||||
color = self.color_palette[class_id]
|
||||
|
||||
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
|
||||
|
||||
label = f"{self.classes[class_id]}: {score:.2f}"
|
||||
|
||||
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
|
||||
label_x = x1
|
||||
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
|
||||
|
||||
cv2.rectangle(
|
||||
img,
|
||||
(int(label_x), int(label_y - label_height)),
|
||||
(int(label_x + label_width), int(label_y + label_height)),
|
||||
color,
|
||||
cv2.FILLED,
|
||||
)
|
||||
|
||||
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
|
||||
def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]:
|
||||
"""
|
||||
Preprocesses the input image before performing inference.
|
||||
|
||||
Args:
|
||||
img (np.ndarray): The input image to be preprocessed.
|
||||
|
||||
Returns:
|
||||
Tuple[np.ndarray, Tuple[float, float]]: A tuple containing:
|
||||
- The preprocessed image (np.ndarray).
|
||||
- A tuple of two float values representing the padding applied (top/bottom, left/right).
|
||||
"""
|
||||
img, pad = self.letterbox(img, (self.in_width, self.in_height))
|
||||
img = img[..., ::-1][None] # N,H,W,C for TFLite
|
||||
img = np.ascontiguousarray(img)
|
||||
img = img.astype(np.float32)
|
||||
return img / 255, pad
|
||||
|
||||
def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray:
|
||||
"""
|
||||
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
|
||||
|
||||
Args:
|
||||
img (numpy.ndarray): The input image.
|
||||
outputs (numpy.ndarray): The output of the model.
|
||||
pad (Tuple[float, float]): Padding used by letterbox.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: The input image with detections drawn on it.
|
||||
"""
|
||||
outputs[:, 0] -= pad[1]
|
||||
outputs[:, 1] -= pad[0]
|
||||
outputs[:, :4] *= max(img.shape)
|
||||
|
||||
outputs = outputs.transpose(0, 2, 1)
|
||||
outputs[..., 0] -= outputs[..., 2] / 2
|
||||
outputs[..., 1] -= outputs[..., 3] / 2
|
||||
|
||||
for out in outputs:
|
||||
scores = out[:, 4:].max(-1)
|
||||
keep = scores > self.conf
|
||||
boxes = out[keep, :4]
|
||||
scores = scores[keep]
|
||||
class_ids = out[keep, 4:].argmax(-1)
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten()
|
||||
|
||||
[self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices]
|
||||
|
||||
return img
|
||||
|
||||
def detect(self, img_path: str) -> np.ndarray:
|
||||
"""
|
||||
Performs inference using a TFLite model and returns the output image with drawn detections.
|
||||
|
||||
Args:
|
||||
img_path (str): The path to the input image file.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The output image with drawn detections.
|
||||
"""
|
||||
img = cv2.imread(img_path)
|
||||
x, pad = self.preprocess(img)
|
||||
if self.int8:
|
||||
x = (x / self.in_scale + self.in_zero_point).astype(np.int8)
|
||||
self.model.set_tensor(self.in_index, x)
|
||||
|
||||
self.model.invoke()
|
||||
|
||||
y = self.model.get_tensor(self.out_index)
|
||||
|
||||
if self.int8:
|
||||
y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale
|
||||
|
||||
return self.postprocess(img, y, pad)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite",
|
||||
help="Path to TFLite model.",
|
||||
)
|
||||
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
|
||||
parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
|
||||
parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
|
||||
parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml")
|
||||
args = parser.parse_args()
|
||||
|
||||
detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata)
|
||||
result = detector.detect(str(ASSETS / "bus.jpg"))[..., ::-1]
|
||||
|
||||
cv2.imshow("Output", result)
|
||||
cv2.waitKey(0)
|
||||
Loading…
Add table
Add a link
Reference in a new issue