Refactor TFLite example. Support FP32, Fp16, INT8 models (#17317)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
788387831a
commit
d28caa9a58
5 changed files with 277 additions and 374 deletions
221
examples/YOLOv8-TFLite-Python/main.py
Normal file
221
examples/YOLOv8-TFLite-Python/main.py
Normal file
|
|
@ -0,0 +1,221 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import argparse
|
||||
from typing import Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import yaml
|
||||
|
||||
from ultralytics.utils import ASSETS
|
||||
|
||||
try:
|
||||
from tflite_runtime.interpreter import Interpreter
|
||||
except ImportError:
|
||||
import tensorflow as tf
|
||||
|
||||
Interpreter = tf.lite.Interpreter
|
||||
|
||||
|
||||
class YOLOv8TFLite:
|
||||
"""
|
||||
YOLOv8TFLite.
|
||||
|
||||
A class for performing object detection using the YOLOv8 model with TensorFlow Lite.
|
||||
|
||||
Attributes:
|
||||
model (str): Path to the TensorFlow Lite model file.
|
||||
conf (float): Confidence threshold for filtering detections.
|
||||
iou (float): Intersection over Union threshold for non-maximum suppression.
|
||||
metadata (Optional[str]): Path to the metadata file, if any.
|
||||
|
||||
Methods:
|
||||
detect(img_path: str) -> np.ndarray:
|
||||
Performs inference and returns the output image with drawn detections.
|
||||
"""
|
||||
|
||||
def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None):
|
||||
"""
|
||||
Initializes an instance of the YOLOv8TFLite class.
|
||||
|
||||
Args:
|
||||
model (str): Path to the TFLite model.
|
||||
conf (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
|
||||
iou (float, optional): IoU (Intersection over Union) threshold for non-maximum suppression. Defaults to 0.45.
|
||||
metadata (Union[str, None], optional): Path to the metadata file or None if not used. Defaults to None.
|
||||
"""
|
||||
self.conf = conf
|
||||
self.iou = iou
|
||||
if metadata is None:
|
||||
self.classes = {i: i for i in range(1000)}
|
||||
else:
|
||||
with open(metadata) as f:
|
||||
self.classes = yaml.safe_load(f)["names"]
|
||||
np.random.seed(42)
|
||||
self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3))
|
||||
|
||||
self.model = Interpreter(model_path=model)
|
||||
self.model.allocate_tensors()
|
||||
|
||||
input_details = self.model.get_input_details()[0]
|
||||
|
||||
self.in_width, self.in_height = input_details["shape"][1:3]
|
||||
self.in_index = input_details["index"]
|
||||
self.in_scale, self.in_zero_point = input_details["quantization"]
|
||||
self.int8 = input_details["dtype"] == np.int8
|
||||
|
||||
output_details = self.model.get_output_details()[0]
|
||||
self.out_index = output_details["index"]
|
||||
self.out_scale, self.out_zero_point = output_details["quantization"]
|
||||
|
||||
def letterbox(self, img: np.ndarray, new_shape: Tuple = (640, 640)) -> Tuple[np.ndarray, Tuple[float, float]]:
|
||||
"""Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
|
||||
shape = img.shape[:2] # current shape [height, width]
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
|
||||
# Compute padding
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
|
||||
|
||||
return img, (top / img.shape[0], left / img.shape[1])
|
||||
|
||||
def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None:
|
||||
"""
|
||||
Draws bounding boxes and labels on the input image based on the detected objects.
|
||||
|
||||
Args:
|
||||
img (np.ndarray): The input image to draw detections on.
|
||||
box (np.ndarray): Detected bounding box in the format [x1, y1, width, height].
|
||||
score (np.float32): Corresponding detection score.
|
||||
class_id (int): Class ID for the detected object.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
x1, y1, w, h = box
|
||||
color = self.color_palette[class_id]
|
||||
|
||||
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
|
||||
|
||||
label = f"{self.classes[class_id]}: {score:.2f}"
|
||||
|
||||
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
|
||||
label_x = x1
|
||||
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
|
||||
|
||||
cv2.rectangle(
|
||||
img,
|
||||
(int(label_x), int(label_y - label_height)),
|
||||
(int(label_x + label_width), int(label_y + label_height)),
|
||||
color,
|
||||
cv2.FILLED,
|
||||
)
|
||||
|
||||
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
|
||||
def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]:
|
||||
"""
|
||||
Preprocesses the input image before performing inference.
|
||||
|
||||
Args:
|
||||
img (np.ndarray): The input image to be preprocessed.
|
||||
|
||||
Returns:
|
||||
Tuple[np.ndarray, Tuple[float, float]]: A tuple containing:
|
||||
- The preprocessed image (np.ndarray).
|
||||
- A tuple of two float values representing the padding applied (top/bottom, left/right).
|
||||
"""
|
||||
img, pad = self.letterbox(img, (self.in_width, self.in_height))
|
||||
img = img[..., ::-1][None] # N,H,W,C for TFLite
|
||||
img = np.ascontiguousarray(img)
|
||||
img = img.astype(np.float32)
|
||||
return img / 255, pad
|
||||
|
||||
def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray:
|
||||
"""
|
||||
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
|
||||
|
||||
Args:
|
||||
img (numpy.ndarray): The input image.
|
||||
outputs (numpy.ndarray): The output of the model.
|
||||
pad (Tuple[float, float]): Padding used by letterbox.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: The input image with detections drawn on it.
|
||||
"""
|
||||
outputs[:, 0] -= pad[1]
|
||||
outputs[:, 1] -= pad[0]
|
||||
outputs[:, :4] *= max(img.shape)
|
||||
|
||||
outputs = outputs.transpose(0, 2, 1)
|
||||
outputs[..., 0] -= outputs[..., 2] / 2
|
||||
outputs[..., 1] -= outputs[..., 3] / 2
|
||||
|
||||
for out in outputs:
|
||||
scores = out[:, 4:].max(-1)
|
||||
keep = scores > self.conf
|
||||
boxes = out[keep, :4]
|
||||
scores = scores[keep]
|
||||
class_ids = out[keep, 4:].argmax(-1)
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten()
|
||||
|
||||
[self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices]
|
||||
|
||||
return img
|
||||
|
||||
def detect(self, img_path: str) -> np.ndarray:
|
||||
"""
|
||||
Performs inference using a TFLite model and returns the output image with drawn detections.
|
||||
|
||||
Args:
|
||||
img_path (str): The path to the input image file.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The output image with drawn detections.
|
||||
"""
|
||||
img = cv2.imread(img_path)
|
||||
x, pad = self.preprocess(img)
|
||||
if self.int8:
|
||||
x = (x / self.in_scale + self.in_zero_point).astype(np.int8)
|
||||
self.model.set_tensor(self.in_index, x)
|
||||
|
||||
self.model.invoke()
|
||||
|
||||
y = self.model.get_tensor(self.out_index)
|
||||
|
||||
if self.int8:
|
||||
y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale
|
||||
|
||||
return self.postprocess(img, y, pad)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite",
|
||||
help="Path to TFLite model.",
|
||||
)
|
||||
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
|
||||
parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
|
||||
parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
|
||||
parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml")
|
||||
args = parser.parse_args()
|
||||
|
||||
detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata)
|
||||
result = detector.detect(str(ASSETS / "bus.jpg"))[..., ::-1]
|
||||
|
||||
cv2.imshow("Output", result)
|
||||
cv2.waitKey(0)
|
||||
Loading…
Add table
Add a link
Reference in a new issue