Ruff format docstring Python code (#15792)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
c1882a4327
commit
d27664216b
63 changed files with 370 additions and 374 deletions
|
|
@ -41,8 +41,8 @@ class SAM(Model):
|
|||
info: Logs information about the SAM model.
|
||||
|
||||
Examples:
|
||||
>>> sam = SAM('sam_b.pt')
|
||||
>>> results = sam.predict('image.jpg', points=[[500, 375]])
|
||||
>>> sam = SAM("sam_b.pt")
|
||||
>>> results = sam.predict("image.jpg", points=[[500, 375]])
|
||||
>>> for r in results:
|
||||
>>> print(f"Detected {len(r.masks)} masks")
|
||||
"""
|
||||
|
|
@ -58,7 +58,7 @@ class SAM(Model):
|
|||
NotImplementedError: If the model file extension is not .pt or .pth.
|
||||
|
||||
Examples:
|
||||
>>> sam = SAM('sam_b.pt')
|
||||
>>> sam = SAM("sam_b.pt")
|
||||
>>> print(sam.is_sam2)
|
||||
"""
|
||||
if model and Path(model).suffix not in {".pt", ".pth"}:
|
||||
|
|
@ -78,8 +78,8 @@ class SAM(Model):
|
|||
task (str | None): Task name. If provided, it specifies the particular task the model is being loaded for.
|
||||
|
||||
Examples:
|
||||
>>> sam = SAM('sam_b.pt')
|
||||
>>> sam._load('path/to/custom_weights.pt')
|
||||
>>> sam = SAM("sam_b.pt")
|
||||
>>> sam._load("path/to/custom_weights.pt")
|
||||
"""
|
||||
self.model = build_sam(weights)
|
||||
|
||||
|
|
@ -100,8 +100,8 @@ class SAM(Model):
|
|||
(List): The model predictions.
|
||||
|
||||
Examples:
|
||||
>>> sam = SAM('sam_b.pt')
|
||||
>>> results = sam.predict('image.jpg', points=[[500, 375]])
|
||||
>>> sam = SAM("sam_b.pt")
|
||||
>>> results = sam.predict("image.jpg", points=[[500, 375]])
|
||||
>>> for r in results:
|
||||
... print(f"Detected {len(r.masks)} masks")
|
||||
"""
|
||||
|
|
@ -130,8 +130,8 @@ class SAM(Model):
|
|||
(List): The model predictions, typically containing segmentation masks and other relevant information.
|
||||
|
||||
Examples:
|
||||
>>> sam = SAM('sam_b.pt')
|
||||
>>> results = sam('image.jpg', points=[[500, 375]])
|
||||
>>> sam = SAM("sam_b.pt")
|
||||
>>> results = sam("image.jpg", points=[[500, 375]])
|
||||
>>> print(f"Detected {len(results[0].masks)} masks")
|
||||
"""
|
||||
return self.predict(source, stream, bboxes, points, labels, **kwargs)
|
||||
|
|
@ -151,7 +151,7 @@ class SAM(Model):
|
|||
(Tuple): A tuple containing the model's information (string representations of the model).
|
||||
|
||||
Examples:
|
||||
>>> sam = SAM('sam_b.pt')
|
||||
>>> sam = SAM("sam_b.pt")
|
||||
>>> info = sam.info()
|
||||
>>> print(info[0]) # Print summary information
|
||||
"""
|
||||
|
|
@ -167,7 +167,7 @@ class SAM(Model):
|
|||
class. For SAM2 models, it maps to SAM2Predictor, otherwise to the standard Predictor.
|
||||
|
||||
Examples:
|
||||
>>> sam = SAM('sam_b.pt')
|
||||
>>> sam = SAM("sam_b.pt")
|
||||
>>> task_map = sam.task_map
|
||||
>>> print(task_map)
|
||||
{'segment': <class 'ultralytics.models.sam.predict.Predictor'>}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue