Ruff format docstring Python code (#15792)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
c1882a4327
commit
d27664216b
63 changed files with 370 additions and 374 deletions
|
|
@ -72,11 +72,11 @@ class Model(nn.Module):
|
|||
|
||||
Examples:
|
||||
>>> from ultralytics import YOLO
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> results = model.predict('image.jpg')
|
||||
>>> model.train(data='coco128.yaml', epochs=3)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model.predict("image.jpg")
|
||||
>>> model.train(data="coco128.yaml", epochs=3)
|
||||
>>> metrics = model.val()
|
||||
>>> model.export(format='onnx')
|
||||
>>> model.export(format="onnx")
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
|
@ -166,8 +166,8 @@ class Model(nn.Module):
|
|||
Results object.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> results = model('https://ultralytics.com/images/bus.jpg')
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model("https://ultralytics.com/images/bus.jpg")
|
||||
>>> for r in results:
|
||||
... print(f"Detected {len(r)} objects in image")
|
||||
"""
|
||||
|
|
@ -188,9 +188,9 @@ class Model(nn.Module):
|
|||
(bool): True if the model string is a valid Triton Server URL, False otherwise.
|
||||
|
||||
Examples:
|
||||
>>> Model.is_triton_model('http://localhost:8000/v2/models/yolov8n')
|
||||
>>> Model.is_triton_model("http://localhost:8000/v2/models/yolov8n")
|
||||
True
|
||||
>>> Model.is_triton_model('yolov8n.pt')
|
||||
>>> Model.is_triton_model("yolov8n.pt")
|
||||
False
|
||||
"""
|
||||
from urllib.parse import urlsplit
|
||||
|
|
@ -253,7 +253,7 @@ class Model(nn.Module):
|
|||
|
||||
Examples:
|
||||
>>> model = Model()
|
||||
>>> model._new('yolov8n.yaml', task='detect', verbose=True)
|
||||
>>> model._new("yolov8n.yaml", task="detect", verbose=True)
|
||||
"""
|
||||
cfg_dict = yaml_model_load(cfg)
|
||||
self.cfg = cfg
|
||||
|
|
@ -284,8 +284,8 @@ class Model(nn.Module):
|
|||
|
||||
Examples:
|
||||
>>> model = Model()
|
||||
>>> model._load('yolov8n.pt')
|
||||
>>> model._load('path/to/weights.pth', task='detect')
|
||||
>>> model._load("yolov8n.pt")
|
||||
>>> model._load("path/to/weights.pth", task="detect")
|
||||
"""
|
||||
if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
|
||||
weights = checks.check_file(weights, download_dir=SETTINGS["weights_dir"]) # download and return local file
|
||||
|
|
@ -348,7 +348,7 @@ class Model(nn.Module):
|
|||
AssertionError: If the model is not a PyTorch model.
|
||||
|
||||
Examples:
|
||||
>>> model = Model('yolov8n.pt')
|
||||
>>> model = Model("yolov8n.pt")
|
||||
>>> model.reset_weights()
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
|
|
@ -377,8 +377,8 @@ class Model(nn.Module):
|
|||
|
||||
Examples:
|
||||
>>> model = Model()
|
||||
>>> model.load('yolov8n.pt')
|
||||
>>> model.load(Path('path/to/weights.pt'))
|
||||
>>> model.load("yolov8n.pt")
|
||||
>>> model.load(Path("path/to/weights.pt"))
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
if isinstance(weights, (str, Path)):
|
||||
|
|
@ -402,8 +402,8 @@ class Model(nn.Module):
|
|||
AssertionError: If the model is not a PyTorch model.
|
||||
|
||||
Examples:
|
||||
>>> model = Model('yolov8n.pt')
|
||||
>>> model.save('my_model.pt')
|
||||
>>> model = Model("yolov8n.pt")
|
||||
>>> model.save("my_model.pt")
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
from copy import deepcopy
|
||||
|
|
@ -439,7 +439,7 @@ class Model(nn.Module):
|
|||
TypeError: If the model is not a PyTorch model.
|
||||
|
||||
Examples:
|
||||
>>> model = Model('yolov8n.pt')
|
||||
>>> model = Model("yolov8n.pt")
|
||||
>>> model.info() # Prints model summary
|
||||
>>> info_list = model.info(detailed=True, verbose=False) # Returns detailed info as a list
|
||||
"""
|
||||
|
|
@ -494,8 +494,8 @@ class Model(nn.Module):
|
|||
AssertionError: If the model is not a PyTorch model.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> image = 'https://ultralytics.com/images/bus.jpg'
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> image = "https://ultralytics.com/images/bus.jpg"
|
||||
>>> embeddings = model.embed(image)
|
||||
>>> print(embeddings[0].shape)
|
||||
"""
|
||||
|
|
@ -531,8 +531,8 @@ class Model(nn.Module):
|
|||
Results object.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> results = model.predict(source='path/to/image.jpg', conf=0.25)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model.predict(source="path/to/image.jpg", conf=0.25)
|
||||
>>> for r in results:
|
||||
... print(r.boxes.data) # print detection bounding boxes
|
||||
|
||||
|
|
@ -592,8 +592,8 @@ class Model(nn.Module):
|
|||
AttributeError: If the predictor does not have registered trackers.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> results = model.track(source='path/to/video.mp4', show=True)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model.track(source="path/to/video.mp4", show=True)
|
||||
>>> for r in results:
|
||||
... print(r.boxes.id) # print tracking IDs
|
||||
|
||||
|
|
@ -635,8 +635,8 @@ class Model(nn.Module):
|
|||
AssertionError: If the model is not a PyTorch model.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> results = model.val(data='coco128.yaml', imgsz=640)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model.val(data="coco128.yaml", imgsz=640)
|
||||
>>> print(results.box.map) # Print mAP50-95
|
||||
"""
|
||||
custom = {"rect": True} # method defaults
|
||||
|
|
@ -677,8 +677,8 @@ class Model(nn.Module):
|
|||
AssertionError: If the model is not a PyTorch model.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> results = model.benchmark(data='coco8.yaml', imgsz=640, half=True)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model.benchmark(data="coco8.yaml", imgsz=640, half=True)
|
||||
>>> print(results)
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
|
|
@ -727,8 +727,8 @@ class Model(nn.Module):
|
|||
RuntimeError: If the export process fails due to errors.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> model.export(format='onnx', dynamic=True, simplify=True)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> model.export(format="onnx", dynamic=True, simplify=True)
|
||||
'path/to/exported/model.onnx'
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
|
|
@ -782,8 +782,8 @@ class Model(nn.Module):
|
|||
ModuleNotFoundError: If the HUB SDK is not installed.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> results = model.train(data='coco128.yaml', epochs=3)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model.train(data="coco128.yaml", epochs=3)
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
|
||||
|
|
@ -847,7 +847,7 @@ class Model(nn.Module):
|
|||
AssertionError: If the model is not a PyTorch model.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> results = model.tune(use_ray=True, iterations=20)
|
||||
>>> print(results)
|
||||
"""
|
||||
|
|
@ -907,7 +907,7 @@ class Model(nn.Module):
|
|||
AttributeError: If the model or predictor does not have a 'names' attribute.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> print(model.names)
|
||||
{0: 'person', 1: 'bicycle', 2: 'car', ...}
|
||||
"""
|
||||
|
|
@ -957,7 +957,7 @@ class Model(nn.Module):
|
|||
(object | None): The transform object of the model if available, otherwise None.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> transforms = model.transforms
|
||||
>>> if transforms:
|
||||
... print(f"Model transforms: {transforms}")
|
||||
|
|
@ -986,9 +986,9 @@ class Model(nn.Module):
|
|||
Examples:
|
||||
>>> def on_train_start(trainer):
|
||||
... print("Training is starting!")
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> model.add_callback("on_train_start", on_train_start)
|
||||
>>> model.train(data='coco128.yaml', epochs=1)
|
||||
>>> model.train(data="coco128.yaml", epochs=1)
|
||||
"""
|
||||
self.callbacks[event].append(func)
|
||||
|
||||
|
|
@ -1005,9 +1005,9 @@ class Model(nn.Module):
|
|||
recognized by the Ultralytics callback system.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> model.add_callback('on_train_start', lambda: print('Training started'))
|
||||
>>> model.clear_callback('on_train_start')
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> model.add_callback("on_train_start", lambda: print("Training started"))
|
||||
>>> model.clear_callback("on_train_start")
|
||||
>>> # All callbacks for 'on_train_start' are now removed
|
||||
|
||||
Notes:
|
||||
|
|
@ -1035,8 +1035,8 @@ class Model(nn.Module):
|
|||
modifications, ensuring consistent behavior across different runs or experiments.
|
||||
|
||||
Examples:
|
||||
>>> model = YOLO('yolov8n.pt')
|
||||
>>> model.add_callback('on_train_start', custom_function)
|
||||
>>> model = YOLO("yolov8n.pt")
|
||||
>>> model.add_callback("on_train_start", custom_function)
|
||||
>>> model.reset_callbacks()
|
||||
# All callbacks are now reset to their default functions
|
||||
"""
|
||||
|
|
@ -1059,7 +1059,7 @@ class Model(nn.Module):
|
|||
(dict): A new dictionary containing only the specified include keys from the input arguments.
|
||||
|
||||
Examples:
|
||||
>>> original_args = {'imgsz': 640, 'data': 'coco.yaml', 'task': 'detect', 'batch': 16, 'epochs': 100}
|
||||
>>> original_args = {"imgsz": 640, "data": "coco.yaml", "task": "detect", "batch": 16, "epochs": 100}
|
||||
>>> reset_args = Model._reset_ckpt_args(original_args)
|
||||
>>> print(reset_args)
|
||||
{'imgsz': 640, 'data': 'coco.yaml', 'task': 'detect'}
|
||||
|
|
@ -1090,9 +1090,9 @@ class Model(nn.Module):
|
|||
NotImplementedError: If the specified key is not supported for the current task.
|
||||
|
||||
Examples:
|
||||
>>> model = Model(task='detect')
|
||||
>>> predictor = model._smart_load('predictor')
|
||||
>>> trainer = model._smart_load('trainer')
|
||||
>>> model = Model(task="detect")
|
||||
>>> predictor = model._smart_load("predictor")
|
||||
>>> trainer = model._smart_load("trainer")
|
||||
|
||||
Notes:
|
||||
- This method is typically used internally by other methods of the Model class.
|
||||
|
|
@ -1128,8 +1128,8 @@ class Model(nn.Module):
|
|||
Examples:
|
||||
>>> model = Model()
|
||||
>>> task_map = model.task_map
|
||||
>>> detect_class_map = task_map['detect']
|
||||
>>> segment_class_map = task_map['segment']
|
||||
>>> detect_class_map = task_map["detect"]
|
||||
>>> segment_class_map = task_map["segment"]
|
||||
|
||||
Note:
|
||||
The actual implementation of this method may vary depending on the specific tasks and
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue