ultralytics 8.0.97 confusion matrix, windows, docs updates (#2511)
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Dowon <ks2515@naver.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
6ee3a9a74b
commit
d1107ca4cb
138 changed files with 744 additions and 351 deletions
|
|
@ -1,11 +1,12 @@
|
|||
---
|
||||
comments: true
|
||||
description: Deploy YOLOv5 on NVIDIA Jetson using TensorRT and DeepStream SDK for high performance inference. Step-by-step guide with code snippets.
|
||||
---
|
||||
|
||||
# Deploy on NVIDIA Jetson using TensorRT and DeepStream SDK
|
||||
|
||||
📚 This guide explains how to deploy a trained model into NVIDIA Jetson Platform and perform inference using TensorRT and DeepStream SDK. Here we use TensorRT to maximize the inference performance on the Jetson platform.
|
||||
UPDATED 18 November 2022.
|
||||
UPDATED 18 November 2022.
|
||||
|
||||
## Hardware Verification
|
||||
|
||||
|
|
@ -27,8 +28,7 @@ There are two major installation methods including,
|
|||
|
||||
You can find a very detailed installation guide from NVIDIA [official website](https://developer.nvidia.com/jetpack-sdk-461). You can also find guides corresponding to the above-mentioned [reComputer J1010](https://wiki.seeedstudio.com/reComputer_J1010_J101_Flash_Jetpack) and [reComputer J2021](https://wiki.seeedstudio.com/reComputer_J2021_J202_Flash_Jetpack).
|
||||
|
||||
|
||||
## Install Necessary Packages
|
||||
## Install Necessary Packages
|
||||
|
||||
- **Step 1.** Access the terminal of Jetson device, install pip and upgrade it
|
||||
|
||||
|
|
@ -89,7 +89,7 @@ Supported by JetPack 4.4 (L4T R32.4.3) / JetPack 4.4.1 (L4T R32.4.4) / JetPack 4
|
|||
|
||||
**PyTorch v1.12.0**
|
||||
|
||||
Supported by JetPack 5.0 (L4T R34.1.0) / JetPack 5.0.1 (L4T R34.1.1) / JetPack 5.0.2 (L4T R35.1.0) with Python 3.8
|
||||
Supported by JetPack 5.0 (L4T R34.1.0) / JetPack 5.0.1 (L4T R34.1.1) / JetPack 5.0.2 (L4T R35.1.0) with Python 3.8
|
||||
|
||||
**file_name:** torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl
|
||||
**URL:** [https://developer.download.nvidia.com/compute/redist/jp/v50/pytorch/torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl](https://developer.download.nvidia.com/compute/redist/jp/v50/pytorch/torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl)
|
||||
|
|
@ -133,7 +133,7 @@ cd ~
|
|||
git clone https://github.com/marcoslucianops/DeepStream-Yolo
|
||||
```
|
||||
|
||||
- **Step 2.** Copy **gen_wts_yoloV5.py** from **DeepStream-Yolo/utils** into **yolov5** directory
|
||||
- **Step 2.** Copy **gen_wts_yoloV5.py** from **DeepStream-Yolo/utils** into **yolov5** directory
|
||||
|
||||
```sh
|
||||
cp DeepStream-Yolo/utils/gen_wts_yoloV5.py yolov5
|
||||
|
|
@ -222,7 +222,7 @@ The above result is running on **Jetson Xavier NX** with **FP32** and **YOLOv5s
|
|||
|
||||
## INT8 Calibration
|
||||
|
||||
If you want to use INT8 precision for inference, you need to follow the steps below
|
||||
If you want to use INT8 precision for inference, you need to follow the steps below
|
||||
|
||||
- **Step 1.** Install OpenCV
|
||||
|
||||
|
|
@ -254,7 +254,7 @@ for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \
|
|||
done
|
||||
```
|
||||
|
||||
**Note:** NVIDIA recommends at least 500 images to get a good accuracy. On this example, 1000 images are chosen to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will result in more accuracy and faster calibration speed. Set it according to you GPU memory. You can set it from **head -1000**. For example, for 2000 images, **head -2000**. This process can take a long time.
|
||||
**Note:** NVIDIA recommends at least 500 images to get a good accuracy. On this example, 1000 images are chosen to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will result in more accuracy and faster calibration speed. Set it according to you GPU memory. You can set it from **head -1000**. For example, for 2000 images, **head -2000**. This process can take a long time.
|
||||
|
||||
- **Step 6.** Create the **calibration.txt** file with all selected images
|
||||
|
||||
|
|
@ -305,7 +305,7 @@ The above result is running on **Jetson Xavier NX** with **INT8** and **YOLOv5s
|
|||
|
||||
## Benchmark results
|
||||
|
||||
The following table summarizes how different models perform on **Jetson Xavier NX**.
|
||||
The following table summarizes how different models perform on **Jetson Xavier NX**.
|
||||
|
||||
| Model Name | Precision | Inference Size | Inference Time (ms) | FPS |
|
||||
|------------|-----------|----------------|---------------------|-----|
|
||||
|
|
@ -314,7 +314,6 @@ The following table summarizes how different models perform on **Jetson Xavier N
|
|||
| | INT8 | 640x640 | 16.66 | 60 |
|
||||
| YOLOv5n | FP32 | 640x640 | 16.66 | 60 |
|
||||
|
||||
|
||||
### Additional
|
||||
|
||||
This tutorial is written by our friends at seeed @lakshanthad and Elaine
|
||||
This tutorial is written by our friends at seeed @lakshanthad and Elaine
|
||||
Loading…
Add table
Add a link
Reference in a new issue