ultralytics 8.0.97 confusion matrix, windows, docs updates (#2511)
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Dowon <ks2515@naver.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
6ee3a9a74b
commit
d1107ca4cb
138 changed files with 744 additions and 351 deletions
|
|
@ -1,5 +1,6 @@
|
|||
---
|
||||
comments: true
|
||||
description: Check YOLO class label with only one class for the whole image, using image classification. Get strategies for training and validation models.
|
||||
---
|
||||
|
||||
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of
|
||||
|
|
@ -74,7 +75,9 @@ see the [Configuration](../usage/cfg.md) page.
|
|||
```
|
||||
|
||||
### Dataset format
|
||||
|
||||
The YOLO classification dataset format is same as the torchvision format. Each class of images has its own folder and you have to simply pass the path of the dataset folder, i.e, `yolo classify train data="path/to/dataset"`
|
||||
|
||||
```
|
||||
dataset/
|
||||
├── train/
|
||||
|
|
@ -88,6 +91,7 @@ dataset/
|
|||
├──── class3/
|
||||
├──── ...
|
||||
```
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains
|
||||
|
|
@ -171,19 +175,19 @@ Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|||
Available YOLOv8-cls export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
| Format | `format` Argument | Model | Metadata | Arguments |
|
||||
|--------------------------------------------------------------------|-------------------|------------------------------|----------|-----------------------------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ | - |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ | `imgsz`, `optimize` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||||
| Format | `format` Argument | Model | Metadata | Arguments |
|
||||
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ | - |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ | `imgsz`, `optimize` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ | `imgsz`, `half` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ | `imgsz`, `keras` |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ | `imgsz` |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ | `imgsz`, `keras` |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ | `imgsz` |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
||||
Loading…
Add table
Add a link
Reference in a new issue