ultralytics 8.0.97 confusion matrix, windows, docs updates (#2511)
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Dowon <ks2515@naver.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
6ee3a9a74b
commit
d1107ca4cb
138 changed files with 744 additions and 351 deletions
|
|
@ -1,5 +1,6 @@
|
|||
---
|
||||
comments: true
|
||||
description: Get started with YOLOv8 Predict mode and input sources. Accepts various input sources such as images, videos, and directories.
|
||||
---
|
||||
|
||||
<img width="1024" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png">
|
||||
|
|
@ -58,10 +59,11 @@ whether each source can be used in streaming mode with `stream=True` ✅ and an
|
|||
| YouTube ✅ | `'https://youtu.be/Zgi9g1ksQHc'` | `str` | |
|
||||
| stream ✅ | `'rtsp://example.com/media.mp4'` | `str` | RTSP, RTMP, HTTP |
|
||||
|
||||
|
||||
## Arguments
|
||||
|
||||
`model.predict` accepts multiple arguments that control the prediction operation. These arguments can be passed directly to `model.predict`:
|
||||
!!! example
|
||||
|
||||
```
|
||||
model.predict(source, save=True, imgsz=320, conf=0.5)
|
||||
```
|
||||
|
|
@ -220,6 +222,7 @@ masks, classification logits, etc.) found in the results object
|
|||
res_plotted = res[0].plot()
|
||||
cv2.imshow("result", res_plotted)
|
||||
```
|
||||
|
||||
| Argument | Description |
|
||||
|-------------------------------|----------------------------------------------------------------------------------------|
|
||||
| `conf (bool)` | Whether to plot the detection confidence score. |
|
||||
|
|
@ -234,7 +237,6 @@ masks, classification logits, etc.) found in the results object
|
|||
| `masks (bool)` | Whether to plot the masks. |
|
||||
| `probs (bool)` | Whether to plot classification probability. |
|
||||
|
||||
|
||||
## Streaming Source `for`-loop
|
||||
|
||||
Here's a Python script using OpenCV (cv2) and YOLOv8 to run inference on video frames. This script assumes you have already installed the necessary packages (opencv-python and ultralytics).
|
||||
|
|
@ -277,4 +279,4 @@ Here's a Python script using OpenCV (cv2) and YOLOv8 to run inference on video f
|
|||
# Release the video capture object and close the display window
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
```
|
||||
```
|
||||
Loading…
Add table
Add a link
Reference in a new issue