ulralytics 8.0.199 *.npy image loading exception handling (#5683)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: snyk-bot <snyk-bot@snyk.io> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
5b3c4cfc0e
commit
cedce60f8c
16 changed files with 479 additions and 280 deletions
|
|
@ -1,5 +1,18 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""SAM model interface."""
|
||||
"""
|
||||
SAM model interface.
|
||||
|
||||
This module provides an interface to the Segment Anything Model (SAM) from Ultralytics, designed for real-time image
|
||||
segmentation tasks. The SAM model allows for promptable segmentation with unparalleled versatility in image analysis,
|
||||
and has been trained on the SA-1B dataset. It features zero-shot performance capabilities, enabling it to adapt to new
|
||||
image distributions and tasks without prior knowledge.
|
||||
|
||||
Key Features:
|
||||
- Promptable segmentation
|
||||
- Real-time performance
|
||||
- Zero-shot transfer capabilities
|
||||
- Trained on SA-1B dataset
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
|
|
@ -11,40 +24,94 @@ from .predict import Predictor
|
|||
|
||||
|
||||
class SAM(Model):
|
||||
"""SAM model interface."""
|
||||
"""
|
||||
SAM (Segment Anything Model) interface class.
|
||||
|
||||
SAM is designed for promptable real-time image segmentation. It can be used with a variety of prompts such as
|
||||
bounding boxes, points, or labels. The model has capabilities for zero-shot performance and is trained on the SA-1B
|
||||
dataset.
|
||||
"""
|
||||
|
||||
def __init__(self, model='sam_b.pt') -> None:
|
||||
"""Initializes the SAM model instance with the specified pre-trained model file."""
|
||||
"""
|
||||
Initializes the SAM model with a pre-trained model file.
|
||||
|
||||
Args:
|
||||
model (str): Path to the pre-trained SAM model file. File should have a .pt or .pth extension.
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If the model file extension is not .pt or .pth.
|
||||
"""
|
||||
if model and Path(model).suffix not in ('.pt', '.pth'):
|
||||
raise NotImplementedError('SAM prediction requires pre-trained *.pt or *.pth model.')
|
||||
super().__init__(model=model, task='segment')
|
||||
|
||||
def _load(self, weights: str, task=None):
|
||||
"""Loads the provided weights into the SAM model."""
|
||||
"""
|
||||
Loads the specified weights into the SAM model.
|
||||
|
||||
Args:
|
||||
weights (str): Path to the weights file.
|
||||
task (str, optional): Task name. Defaults to None.
|
||||
"""
|
||||
self.model = build_sam(weights)
|
||||
|
||||
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
||||
"""Predicts and returns segmentation masks for given image or video source."""
|
||||
"""
|
||||
Performs segmentation prediction on the given image or video source.
|
||||
|
||||
Args:
|
||||
source: Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
|
||||
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
|
||||
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
|
||||
points (list, optional): List of points for prompted segmentation. Defaults to None.
|
||||
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
The segmentation masks.
|
||||
"""
|
||||
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024)
|
||||
kwargs.update(overrides)
|
||||
prompts = dict(bboxes=bboxes, points=points, labels=labels)
|
||||
return super().predict(source, stream, prompts=prompts, **kwargs)
|
||||
|
||||
def __call__(self, source=None, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
"""
|
||||
Alias for the 'predict' method.
|
||||
|
||||
Args:
|
||||
source: Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
|
||||
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
|
||||
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
|
||||
points (list, optional): List of points for prompted segmentation. Defaults to None.
|
||||
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
The segmentation masks.
|
||||
"""
|
||||
return self.predict(source, stream, bboxes, points, labels, **kwargs)
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
Logs information about the SAM model.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
detailed (bool, optional): If True, displays detailed information about the model. Defaults to False.
|
||||
verbose (bool, optional): If True, displays information on the console. Defaults to True.
|
||||
|
||||
Returns:
|
||||
(tuple): A tuple containing the model's information.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose)
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
"""Returns a dictionary mapping the 'segment' task to its corresponding 'Predictor'."""
|
||||
"""
|
||||
Provides a mapping from the 'segment' task to its corresponding 'Predictor'.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary mapping the 'segment' task to its corresponding 'Predictor'.
|
||||
"""
|
||||
return {'segment': {'predictor': Predictor}}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue