Fix gitignore to format Docs datasets (#16071)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
6f5c3c8cea
commit
ce24c7273e
41 changed files with 767 additions and 744 deletions
|
|
@ -109,7 +109,7 @@ To train a model on the xView dataset using Ultralytics YOLO, follow these steps
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -119,10 +119,10 @@ To train a model on the xView dataset using Ultralytics YOLO, follow these steps
|
|||
# Train the model
|
||||
results = model.train(data="xView.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=xView.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
@ -133,6 +133,7 @@ For detailed arguments and settings, refer to the model [Training](../../modes/t
|
|||
### What are the key features of the xView dataset?
|
||||
|
||||
The xView dataset stands out due to its comprehensive set of features:
|
||||
|
||||
- Over 1 million object instances across 60 distinct classes.
|
||||
- High-resolution imagery at 0.3 meters.
|
||||
- Diverse object types including small, rare, and fine-grained objects, all annotated with bounding boxes.
|
||||
|
|
@ -160,5 +161,5 @@ If you utilize the xView dataset in your research, please cite the following pap
|
|||
primaryClass={cs.CV}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
For more information about the xView dataset, visit the official [xView dataset website](http://xviewdataset.org/).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue