Fix gitignore to format Docs datasets (#16071)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-09-06 17:17:33 +02:00 committed by GitHub
parent 6f5c3c8cea
commit ce24c7273e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
41 changed files with 767 additions and 744 deletions

View file

@ -16,20 +16,20 @@ The Ultralytics YOLO format is a dataset configuration format that allows you to
```yaml
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes (80 COCO classes)
names:
0: person
1: bicycle
2: car
# ...
77: teddy bear
78: hair drier
79: toothbrush
0: person
1: bicycle
2: car
# ...
77: teddy bear
78: hair drier
79: toothbrush
```
Labels for this format should be exported to YOLO format with one `*.txt` file per image. If there are no objects in an image, no `*.txt` file is required. The `*.txt` file should be formatted with one row per object in `class x_center y_center width height` format. Box coordinates must be in **normalized xywh** format (from 0 to 1). If your boxes are in pixels, you should divide `x_center` and `width` by image width, and `y_center` and `height` by image height. Class numbers should be zero-indexed (start with 0).
@ -121,15 +121,15 @@ Remember to double-check if the dataset you want to use is compatible with your
The Ultralytics YOLO format is a structured configuration for defining datasets in your training projects. It involves setting paths to your training, validation, and testing images and corresponding labels. For example:
```yaml
path: ../datasets/coco8 # dataset root directory
train: images/train # training images (relative to 'path')
val: images/val # validation images (relative to 'path')
test: # optional test images
path: ../datasets/coco8 # dataset root directory
train: images/train # training images (relative to 'path')
val: images/val # validation images (relative to 'path')
test: # optional test images
names:
0: person
1: bicycle
2: car
# ...
0: person
1: bicycle
2: car
# ...
```
Labels are saved in `*.txt` files with one file per image, formatted as `class x_center y_center width height` with normalized coordinates. For a detailed guide, see the [COCO8 dataset example](coco8.md).
@ -167,7 +167,7 @@ To start training a YOLOv8 model, ensure your dataset is formatted correctly and
!!! Example
=== "Python"
```python
from ultralytics import YOLO
@ -176,7 +176,7 @@ To start training a YOLOv8 model, ensure your dataset is formatted correctly and
```
=== "CLI"
```bash
yolo detect train data=path/to/your_dataset.yaml model=yolov8n.pt epochs=100 imgsz=640
```