Fix gitignore to format Docs datasets (#16071)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
6f5c3c8cea
commit
ce24c7273e
41 changed files with 767 additions and 744 deletions
|
|
@ -114,7 +114,7 @@ You can train a YOLOv8 model on the African Wildlife Dataset by using the `afric
|
|||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -126,7 +126,7 @@ You can train a YOLOv8 model on the African Wildlife Dataset by using the `afric
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=african-wildlife.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ To train a YOLOv8 model with the Argoverse dataset, use the provided YAML config
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -119,10 +119,10 @@ To train a YOLOv8 model with the Argoverse dataset, use the provided YAML config
|
|||
# Train the model
|
||||
results = model.train(data="Argoverse.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=Argoverse.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
|
|||
|
|
@ -113,7 +113,7 @@ You can train a YOLOv8 model on the brain tumor dataset for 100 epochs with an i
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -123,10 +123,10 @@ You can train a YOLOv8 model on the brain tumor dataset for 100 epochs with an i
|
|||
# Train the model
|
||||
results = model.train(data="brain-tumor.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=brain-tumor.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
@ -157,7 +157,7 @@ Inference using a fine-tuned YOLOv8 model can be performed with either Python or
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start prediction with a finetuned *.pt model
|
||||
yolo detect predict model='path/to/best.pt' imgsz=640 source="https://ultralytics.com/assets/brain-tumor-sample.jpg"
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ The [COCO](https://cocodataset.org/#home) (Common Objects in Context) dataset is
|
|||
## COCO Pretrained Models
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|--------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
|
||||
|
|
@ -127,7 +127,7 @@ To train a YOLOv8 model using the COCO dataset, you can use the following code s
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -139,7 +139,7 @@ To train a YOLOv8 model using the COCO dataset, you can use the following code s
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=coco.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
|
|||
|
|
@ -102,7 +102,7 @@ To train a YOLOv8 model using the COCO8 dataset, you can employ either Python or
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
|
|||
|
|
@ -103,7 +103,7 @@ To train a YOLOv8n model on the Global Wheat Head Dataset, you can use the follo
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
|
|||
|
|
@ -16,20 +16,20 @@ The Ultralytics YOLO format is a dataset configuration format that allows you to
|
|||
|
||||
```yaml
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes (80 COCO classes)
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
# ...
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
# ...
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
```
|
||||
|
||||
Labels for this format should be exported to YOLO format with one `*.txt` file per image. If there are no objects in an image, no `*.txt` file is required. The `*.txt` file should be formatted with one row per object in `class x_center y_center width height` format. Box coordinates must be in **normalized xywh** format (from 0 to 1). If your boxes are in pixels, you should divide `x_center` and `width` by image width, and `y_center` and `height` by image height. Class numbers should be zero-indexed (start with 0).
|
||||
|
|
@ -121,15 +121,15 @@ Remember to double-check if the dataset you want to use is compatible with your
|
|||
The Ultralytics YOLO format is a structured configuration for defining datasets in your training projects. It involves setting paths to your training, validation, and testing images and corresponding labels. For example:
|
||||
|
||||
```yaml
|
||||
path: ../datasets/coco8 # dataset root directory
|
||||
train: images/train # training images (relative to 'path')
|
||||
val: images/val # validation images (relative to 'path')
|
||||
test: # optional test images
|
||||
path: ../datasets/coco8 # dataset root directory
|
||||
train: images/train # training images (relative to 'path')
|
||||
val: images/val # validation images (relative to 'path')
|
||||
test: # optional test images
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
# ...
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
# ...
|
||||
```
|
||||
|
||||
Labels are saved in `*.txt` files with one file per image, formatted as `class x_center y_center width height` with normalized coordinates. For a detailed guide, see the [COCO8 dataset example](coco8.md).
|
||||
|
|
@ -167,7 +167,7 @@ To start training a YOLOv8 model, ensure your dataset is formatted correctly and
|
|||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -176,7 +176,7 @@ To start training a YOLOv8 model, ensure your dataset is formatted correctly and
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
yolo detect train data=path/to/your_dataset.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
|
|
|||
|
|
@ -121,7 +121,7 @@ To train a YOLOv8n model on the LVIS dataset for 100 epochs with an image size o
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -131,10 +131,10 @@ To train a YOLOv8n model on the LVIS dataset for 100 epochs with an image size o
|
|||
# Train the model
|
||||
results = model.train(data="lvis.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=lvis.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
|
|||
|
|
@ -127,6 +127,7 @@ Refer to the [Training](../../modes/train.md) page for a comprehensive list of a
|
|||
### Why should I use the Objects365 dataset for my object detection projects?
|
||||
|
||||
The Objects365 dataset offers several advantages for object detection tasks:
|
||||
|
||||
1. **Diversity**: It includes 2 million images with objects in diverse scenarios, covering 365 categories.
|
||||
2. **High-quality Annotations**: Over 30 million bounding boxes provide comprehensive ground truth data.
|
||||
3. **Performance**: Models pre-trained on Objects365 significantly outperform those trained on datasets like ImageNet, leading to better generalization.
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ keywords: Open Images V7, Google dataset, computer vision, YOLOv8 models, object
|
|||
## Open Images V7 Pretrained Models
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|-------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
||||
|
|
@ -141,10 +141,9 @@ Open Images V7 is an extensive and versatile dataset created by Google, designed
|
|||
To train a YOLOv8 model on the Open Images V7 dataset, you can use both Python and CLI commands. Here's an example of training the YOLOv8n model for 100 epochs with an image size of 640:
|
||||
|
||||
!!! Example "Train Example"
|
||||
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -154,10 +153,10 @@ To train a YOLOv8 model on the Open Images V7 dataset, you can use both Python a
|
|||
# Train the model on the Open Images V7 dataset
|
||||
results = model.train(data="open-images-v7.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Train a COCO-pretrained YOLOv8n model on the Open Images V7 dataset
|
||||
yolo detect train data=open-images-v7.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
@ -168,6 +167,7 @@ For more details on arguments and settings, refer to the [Training](../../modes/
|
|||
### What are some key features of the Open Images V7 dataset?
|
||||
|
||||
The Open Images V7 dataset includes approximately 9 million images with various annotations:
|
||||
|
||||
- **Bounding Boxes**: 16 million bounding boxes across 600 object classes.
|
||||
- **Segmentation Masks**: Masks for 2.8 million objects across 350 classes.
|
||||
- **Visual Relationships**: 3.3 million annotations indicating relationships, properties, and actions.
|
||||
|
|
@ -179,17 +179,18 @@ The Open Images V7 dataset includes approximately 9 million images with various
|
|||
|
||||
Ultralytics provides several YOLOv8 pretrained models for the Open Images V7 dataset, each with different sizes and performance metrics:
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|-------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
||||
|
||||
### What applications can the Open Images V7 dataset be used for?
|
||||
|
||||
The Open Images V7 dataset supports a variety of computer vision tasks including:
|
||||
|
||||
- **Image Classification**
|
||||
- **Object Detection**
|
||||
- **Instance Segmentation**
|
||||
|
|
|
|||
|
|
@ -142,7 +142,7 @@ To use the Roboflow 100 dataset for benchmarking, you can implement the RF100Ben
|
|||
!!! Example "Benchmarking example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
import os
|
||||
import shutil
|
||||
|
|
|
|||
|
|
@ -116,7 +116,7 @@ Training a YOLOv8 model on the SKU-110k dataset is straightforward. Here's an ex
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -126,10 +126,10 @@ Training a YOLOv8 model on the SKU-110k dataset is straightforward. Here's an ex
|
|||
# Train the model
|
||||
results = model.train(data="SKU-110K.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=SKU-110K.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
|
|||
|
|
@ -107,6 +107,7 @@ We would like to acknowledge the AISKYEYE team at the Lab of Machine Learning an
|
|||
### What is the VisDrone Dataset and what are its key features?
|
||||
|
||||
The [VisDrone Dataset](https://github.com/VisDrone/VisDrone-Dataset) is a large-scale benchmark created by the AISKYEYE team at Tianjin University, China. It is designed for various computer vision tasks related to drone-based image and video analysis. Key features include:
|
||||
|
||||
- **Composition**: 288 video clips with 261,908 frames and 10,209 static images.
|
||||
- **Annotations**: Over 2.6 million bounding boxes for objects like pedestrians, cars, bicycles, and tricycles.
|
||||
- **Diversity**: Collected across 14 cities, in urban and rural settings, under different weather and lighting conditions.
|
||||
|
|
@ -119,7 +120,7 @@ To train a YOLOv8 model on the VisDrone dataset for 100 epochs with an image siz
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -131,7 +132,7 @@ To train a YOLOv8 model on the VisDrone dataset for 100 epochs with an image siz
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=VisDrone.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
@ -142,6 +143,7 @@ For additional configuration options, please refer to the model [Training](../..
|
|||
### What are the main subsets of the VisDrone dataset and their applications?
|
||||
|
||||
The VisDrone dataset is divided into five main subsets, each tailored for a specific computer vision task:
|
||||
|
||||
1. **Task 1**: Object detection in images.
|
||||
2. **Task 2**: Object detection in videos.
|
||||
3. **Task 3**: Single-object tracking.
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ To train a model on the xView dataset using Ultralytics YOLO, follow these steps
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -119,10 +119,10 @@ To train a model on the xView dataset using Ultralytics YOLO, follow these steps
|
|||
# Train the model
|
||||
results = model.train(data="xView.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=xView.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
|
@ -133,6 +133,7 @@ For detailed arguments and settings, refer to the model [Training](../../modes/t
|
|||
### What are the key features of the xView dataset?
|
||||
|
||||
The xView dataset stands out due to its comprehensive set of features:
|
||||
|
||||
- Over 1 million object instances across 60 distinct classes.
|
||||
- High-resolution imagery at 0.3 meters.
|
||||
- Diverse object types including small, rare, and fine-grained objects, all annotated with bounding boxes.
|
||||
|
|
@ -160,5 +161,5 @@ If you utilize the xView dataset in your research, please cite the following pap
|
|||
primaryClass={cs.CV}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
For more information about the xView dataset, visit the official [xView dataset website](http://xviewdataset.org/).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue