Fix gitignore to format Docs datasets (#16071)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
6f5c3c8cea
commit
ce24c7273e
41 changed files with 767 additions and 744 deletions
|
|
@ -110,11 +110,13 @@ To train an Ultralytics YOLO model on the Caltech-101 dataset, you can use the p
|
|||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=caltech101 model=yolov8n-cls.pt epochs=100 imgsz=416
|
||||
```
|
||||
|
||||
For more detailed arguments and options, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
### What are the key features of the Caltech-101 dataset?
|
||||
|
||||
The Caltech-101 dataset includes:
|
||||
|
||||
- Around 9,000 color images across 101 categories.
|
||||
- Categories covering a diverse range of objects, including animals, vehicles, and household items.
|
||||
- Variable number of images per category, typically between 40 and 800.
|
||||
|
|
@ -142,6 +144,7 @@ Citing the Caltech-101 dataset in your research acknowledges the creators' contr
|
|||
publisher={Elsevier}
|
||||
}
|
||||
```
|
||||
|
||||
Citing helps in maintaining the integrity of academic work and assists peers in locating the original resource.
|
||||
|
||||
### Can I use Ultralytics HUB for training models on the Caltech-101 dataset?
|
||||
|
|
|
|||
|
|
@ -92,7 +92,7 @@ You can train a YOLO model on the CIFAR-100 dataset using either Python or CLI c
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -104,7 +104,7 @@ You can train a YOLO model on the CIFAR-100 dataset using either Python or CLI c
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=cifar100 model=yolov8n-cls.pt epochs=100 imgsz=32
|
||||
|
|
|
|||
|
|
@ -102,7 +102,7 @@ To train an Ultralytics YOLO model on the Fashion-MNIST dataset, you can use bot
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -112,10 +112,10 @@ To train an Ultralytics YOLO model on the Fashion-MNIST dataset, you can use bot
|
|||
# Train the model on Fashion-MNIST
|
||||
results = model.train(data="fashion-mnist", epochs=100, imgsz=28)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
yolo classify train data=fashion-mnist model=yolov8n-cls.pt epochs=100 imgsz=28
|
||||
```
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ keywords: ImageNet, deep learning, visual recognition, computer vision, pretrain
|
|||
## ImageNet Pretrained Models
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
|----------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|--------------------------------|-------------------------------------|--------------------|--------------------------|
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
||||
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||||
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||||
|
|
@ -105,7 +105,7 @@ To use a pretrained Ultralytics YOLO model for image classification on the Image
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -117,7 +117,7 @@ To use a pretrained Ultralytics YOLO model for image classification on the Image
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
|
|
|
|||
|
|
@ -152,12 +152,12 @@ The ImageNette dataset is advantageous for several reasons:
|
|||
- **Quick and Simple**: It contains only 10 classes, making it less complex and time-consuming compared to larger datasets.
|
||||
- **Educational Use**: Ideal for learning and teaching the basics of image classification since it requires less computational power and time.
|
||||
- **Versatility**: Widely used to train and benchmark various machine learning models, especially in image classification.
|
||||
|
||||
|
||||
For more details on model training and dataset management, explore the [Dataset Structure](#dataset-structure) section.
|
||||
|
||||
### Can the ImageNette dataset be used with different image sizes?
|
||||
|
||||
Yes, the ImageNette dataset is also available in two resized versions: ImageNette160 and ImageNette320. These versions help in faster prototyping and are especially useful when computational resources are limited.
|
||||
Yes, the ImageNette dataset is also available in two resized versions: ImageNette160 and ImageNette320. These versions help in faster prototyping and are especially useful when computational resources are limited.
|
||||
|
||||
!!! Example "Train Example with ImageNette160"
|
||||
|
||||
|
|
@ -174,7 +174,7 @@ Yes, the ImageNette dataset is also available in two resized versions: ImageNett
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model with ImageNette160
|
||||
yolo detect train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
|
||||
|
|
|
|||
|
|
@ -112,17 +112,17 @@ To train a Convolutional Neural Network (CNN) model on the ImageWoof dataset usi
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n-cls.pt") # Load a pretrained model
|
||||
results = model.train(data="imagewoof", epochs=100, imgsz=224)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
yolo classify train data=imagewoof model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
|
|
|||
|
|
@ -197,7 +197,7 @@ Training a model using Ultralytics YOLO can be done easily in both Python and CL
|
|||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -207,10 +207,10 @@ Training a model using Ultralytics YOLO can be done easily in both Python and CL
|
|||
# Train the model
|
||||
results = model.train(data="path/to/dataset", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=path/to/data model=yolov8n-cls.pt epochs=100 imgsz=640
|
||||
|
|
|
|||
|
|
@ -98,7 +98,7 @@ To train a model on the MNIST dataset using Ultralytics YOLO, you can follow the
|
|||
!!! Example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -110,7 +110,7 @@ To train a model on the MNIST dataset using Ultralytics YOLO, you can follow the
|
|||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=mnist model=yolov8n-cls.pt epochs=100 imgsz=28
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue