Update coco-seg.yaml to coco.yaml (#17739)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
10b0bbd847
commit
cd6ef6105a
4 changed files with 10 additions and 10 deletions
|
|
@ -150,8 +150,8 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|||
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
|
||||
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
|||
|
|
@ -150,8 +150,8 @@ YOLO11 [检测](https://docs.ultralytics.com/tasks/detect/)、[分割](https://d
|
|||
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
|
||||
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
|
||||
|
||||
- **mAP<sup>val</sup>** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。 <br>复制命令 `yolo val segment data=coco-seg.yaml device=0`
|
||||
- **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。 <br>复制命令 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
||||
- **mAP<sup>val</sup>** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。 <br>复制命令 `yolo val segment data=coco.yaml device=0`
|
||||
- **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。 <br>复制命令 `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
|||
|
|
@ -56,14 +56,14 @@ To train a YOLO11n-seg model on the COCO-Seg dataset for 100 [epochs](https://ww
|
|||
model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco-seg.yaml", epochs=100, imgsz=640)
|
||||
results = model.train(data="coco.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Sample Images and Annotations
|
||||
|
|
@ -118,14 +118,14 @@ To train a YOLO11n-seg model on the COCO-Seg dataset for 100 epochs with an imag
|
|||
model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco-seg.yaml", epochs=100, imgsz=640)
|
||||
results = model.train(data="coco.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### What are the key features of the COCO-Seg dataset?
|
||||
|
|
|
|||
|
|
@ -36,8 +36,8 @@ YOLO11 pretrained Segment models are shown here. Detect, Segment and Pose models
|
|||
|
||||
{% include "macros/yolo-seg-perf.md" %}
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
||||
|
||||
## Train
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue