diff --git a/docs/en/datasets/classify/imagenet.md b/docs/en/datasets/classify/imagenet.md
index 6541c070..071aa44c 100644
--- a/docs/en/datasets/classify/imagenet.md
+++ b/docs/en/datasets/classify/imagenet.md
@@ -8,6 +8,16 @@ keywords: Ultralytics, YOLO, ImageNet, dataset, object recognition, deep learnin
[ImageNet](https://www.image-net.org/) is a large-scale database of annotated images designed for use in visual object recognition research. It contains over 14 million images, with each image annotated using WordNet synsets, making it one of the most extensive resources available for training deep learning models in computer vision tasks.
+## ImageNet Pretrained Models
+
+| Model | size (pixels) | acc top1 | acc top5 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) at 640 |
+|----------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|--------------------------------|-------------------------------------|--------------------|--------------------------|
+| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
+| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
+| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
+| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
+| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
+
## Key Features
- ImageNet contains over 14 million high-resolution images spanning thousands of object categories.
diff --git a/docs/en/datasets/detect/coco.md b/docs/en/datasets/detect/coco.md
index 65d5c949..b3111acd 100644
--- a/docs/en/datasets/detect/coco.md
+++ b/docs/en/datasets/detect/coco.md
@@ -19,6 +19,16 @@ The [COCO](https://cocodataset.org/#home) (Common Objects in Context) dataset is
Watch: Ultralytics COCO Dataset Overview
+## COCO Pretrained Models
+
+| Model | size (pixels) | mAPval 50-95 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) |
+|--------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
+| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
+| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
+| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
+| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
+| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
+
## Key Features
- COCO contains 330K images, with 200K images having annotations for object detection, segmentation, and captioning tasks.
diff --git a/docs/en/datasets/pose/coco.md b/docs/en/datasets/pose/coco.md
index 2eadc5e3..8c8c6377 100644
--- a/docs/en/datasets/pose/coco.md
+++ b/docs/en/datasets/pose/coco.md
@@ -10,6 +10,17 @@ The [COCO-Pose](https://cocodataset.org/#keypoints-2017) dataset is a specialize

+## COCO-Pose Pretrained Models
+
+| Model | size (pixels) | mAPpose 50-95 | mAPpose 50 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) |
+|------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
+| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
+| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
+| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
+| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
+| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
+| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
+
## Key Features
- COCO-Pose builds upon the COCO Keypoints 2017 dataset which contains 200K images labeled with keypoints for pose estimation tasks.
diff --git a/docs/en/datasets/segment/coco.md b/docs/en/datasets/segment/coco.md
index febffa96..7c1d5f4c 100644
--- a/docs/en/datasets/segment/coco.md
+++ b/docs/en/datasets/segment/coco.md
@@ -8,6 +8,16 @@ keywords: Ultralytics, YOLO, COCO-Seg, dataset, instance segmentation, model tra
The [COCO-Seg](https://cocodataset.org/#home) dataset, an extension of the COCO (Common Objects in Context) dataset, is specially designed to aid research in object instance segmentation. It uses the same images as COCO but introduces more detailed segmentation annotations. This dataset is a crucial resource for researchers and developers working on instance segmentation tasks, especially for training YOLO models.
+## COCO-Seg Pretrained Models
+
+| Model | size (pixels) | mAPbox 50-95 | mAPmask 50-95 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) |
+|----------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
+| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
+| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
+| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
+| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
+| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
+
## Key Features
- COCO-Seg retains the original 330K images from COCO.
diff --git a/docs/en/hub/cloud-training.md b/docs/en/hub/cloud-training.md
index f774475a..2045703b 100644
--- a/docs/en/hub/cloud-training.md
+++ b/docs/en/hub/cloud-training.md
@@ -64,6 +64,17 @@ Once the model and mode of training have been selected, you can monitor the trai
## Stopping and Resuming Your Training
+
+
+
+
+ Watch: Pause and Resume Model Training Using Ultralytics HUB
+
+
Once the training has started, you can `Stop` the training, which will also correspondingly pause the credit usage. You can then `Resume` the training from the point where it stopped.
