Scope ultralytics/CLIP imports (#9449)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
7df821e6ea
commit
cd172e9d12
2 changed files with 20 additions and 20 deletions
|
|
@ -9,7 +9,7 @@ import numpy as np
|
|||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.utils import TQDM
|
||||
from ultralytics.utils import TQDM, checks
|
||||
|
||||
|
||||
class FastSAMPrompt:
|
||||
|
|
@ -33,9 +33,7 @@ class FastSAMPrompt:
|
|||
try:
|
||||
import clip
|
||||
except ImportError:
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
|
||||
check_requirements("git+https://github.com/ultralytics/CLIP.git")
|
||||
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
|
||||
import clip
|
||||
self.clip = clip
|
||||
|
||||
|
|
@ -115,7 +113,8 @@ class FastSAMPrompt:
|
|||
points (list, optional): Points to be plotted. Defaults to None.
|
||||
point_label (list, optional): Labels for the points. Defaults to None.
|
||||
mask_random_color (bool, optional): Whether to use random color for masks. Defaults to True.
|
||||
better_quality (bool, optional): Whether to apply morphological transformations for better mask quality. Defaults to True.
|
||||
better_quality (bool, optional): Whether to apply morphological transformations for better mask quality.
|
||||
Defaults to True.
|
||||
retina (bool, optional): Whether to use retina mask. Defaults to False.
|
||||
with_contours (bool, optional): Whether to plot contours. Defaults to True.
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -1,18 +1,12 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.models import yolo
|
||||
from ultralytics.nn.tasks import WorldModel
|
||||
from ultralytics.utils import DEFAULT_CFG, RANK
|
||||
from ultralytics.data import build_yolo_dataset
|
||||
from ultralytics.utils.torch_utils import de_parallel
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
import itertools
|
||||
|
||||
try:
|
||||
import clip
|
||||
except ImportError:
|
||||
check_requirements("git+https://github.com/ultralytics/CLIP.git")
|
||||
import clip
|
||||
from ultralytics.data import build_yolo_dataset
|
||||
from ultralytics.models import yolo
|
||||
from ultralytics.nn.tasks import WorldModel
|
||||
from ultralytics.utils import DEFAULT_CFG, RANK, checks
|
||||
from ultralytics.utils.torch_utils import de_parallel
|
||||
|
||||
|
||||
def on_pretrain_routine_end(trainer):
|
||||
|
|
@ -22,10 +16,9 @@ def on_pretrain_routine_end(trainer):
|
|||
names = [name.split("/")[0] for name in list(trainer.test_loader.dataset.data["names"].values())]
|
||||
de_parallel(trainer.ema.ema).set_classes(names, cache_clip_model=False)
|
||||
device = next(trainer.model.parameters()).device
|
||||
text_model, _ = clip.load("ViT-B/32", device=device)
|
||||
for p in text_model.parameters():
|
||||
trainer.text_model, _ = trainer.clip.load("ViT-B/32", device=device)
|
||||
for p in trainer.text_model.parameters():
|
||||
p.requires_grad_(False)
|
||||
trainer.text_model = text_model
|
||||
|
||||
|
||||
class WorldTrainer(yolo.detect.DetectionTrainer):
|
||||
|
|
@ -48,6 +41,14 @@ class WorldTrainer(yolo.detect.DetectionTrainer):
|
|||
overrides = {}
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
|
||||
# Import and assign clip
|
||||
try:
|
||||
import clip
|
||||
except ImportError:
|
||||
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
|
||||
import clip
|
||||
self.clip = clip
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Return WorldModel initialized with specified config and weights."""
|
||||
# NOTE: This `nc` here is the max number of different text samples in one image, rather than the actual `nc`.
|
||||
|
|
@ -84,7 +85,7 @@ class WorldTrainer(yolo.detect.DetectionTrainer):
|
|||
|
||||
# NOTE: add text features
|
||||
texts = list(itertools.chain(*batch["texts"]))
|
||||
text_token = clip.tokenize(texts).to(batch["img"].device)
|
||||
text_token = self.clip.tokenize(texts).to(batch["img"].device)
|
||||
txt_feats = self.text_model.encode_text(text_token).to(dtype=batch["img"].dtype) # torch.float32
|
||||
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
|
||||
batch["txt_feats"] = txt_feats.reshape(len(batch["texts"]), -1, txt_feats.shape[-1])
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue