Add YOLOv5 tutorials to docs.ultralytics.com (#1657)

Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Sergiu Waxmann <47978446+sergiuwaxmann@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-03-29 22:56:52 +02:00 committed by GitHub
parent ec10002a4a
commit ccb6419835
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
29 changed files with 3656 additions and 278 deletions

View file

@ -1,14 +1,60 @@
The YOLO Command Line Interface (CLI) is the easiest way to get started training, validating, predicting and exporting
YOLOv8 models.
# Command Line Interface Usage
The `yolo` command is used for all actions:
The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment.
CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command.
!!! example ""
!!! example
=== "CLI"
=== "Syntax"
Ultralytics `yolo` commands use the following syntax:
```bash
yolo TASK MODE ARGS
Where TASK (optional) is one of [detect, segment, classify]
MODE (required) is one of [train, val, predict, export, track]
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
```
See all ARGS in the full [Configuration Guide](./cfg.md) or with `yolo cfg`
=== "Train"
Train a detection model for 10 epochs with an initial learning_rate of 0.01
```bash
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
```
=== "Predict"
Predict a YouTube video using a pretrained segmentation model at image size 320:
```bash
yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
```
=== "Val"
Val a pretrained detection model at batch-size 1 and image size 640:
```bash
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
```
=== "Export"
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
```bash
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
```
=== "Special"
Run special commands to see version, view settings, run checks and more:
```bash
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
```
Where:
@ -20,9 +66,9 @@ Where:
For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml`
GitHub [source](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml).
!!! note ""
!!! warning "Warning"
<b>Note:</b> Arguments MUST be passed as `arg=val` with an equals sign and a space between `arg=val` pairs
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` beteen arguments.
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` &nbsp;
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` &nbsp;
@ -33,63 +79,100 @@ Where:
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
the [Configuration](cfg.md) page.
!!! example ""
!!! example "Example"
```bash
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
yolo detect train resume model=last.pt # resume training
```
=== "Train"
Start training YOLOv8n on COCO128 for 100 epochs at image-size 640.
```bash
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
```
=== "Resume"
Resume an interrupted training.
```bash
yolo detect train resume model=last.pt
```
## Val
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
training `data` and arguments as model attributes.
!!! example ""
!!! example "Example"
```bash
yolo detect val model=yolov8n.pt # val official model
yolo detect val model=path/to/best.pt # val custom model
```
=== "Official"
Validate an official YOLOv8n model.
```bash
yolo detect val model=yolov8n.pt
```
=== "Custom"
Validate a custom-trained model.
```bash
yolo detect val model=path/to/best.pt
```
## Predict
Use a trained YOLOv8n model to run predictions on images.
!!! example ""
!!! example "Example"
```bash
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
=== "Official"
Predict with an official YOLOv8n model.
```bash
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
=== "Custom"
Predict with a custom model.
```bash
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'
```
## Export
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
!!! example ""
!!! example "Example"
```bash
yolo export model=yolov8n.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
=== "Official"
Available YOLOv8 export formats include:
| Format | `format=` | Model |
|----------------------------------------------------------------------------|--------------------|---------------------------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |
Export an official YOLOv8n model to ONNX format.
```bash
yolo export model=yolov8n.pt format=onnx
```
=== "Custom"
Export a custom-trained model to ONNX format.
```bash
yolo export model=path/to/best.pt format=onnx
```
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument,
i.e. `format='onnx'` or `format='engine'`.
| Format | `format` Argument | Model | Metadata |
|--------------------------------------------------------------------|-------------------|---------------------------|----------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |
---
@ -99,19 +182,19 @@ Default arguments can be overridden by simply passing them as arguments in the C
!!! tip ""
=== "Example 1"
=== "Train"
Train a detection model for `10 epochs` with `learning_rate` of `0.01`
```bash
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
```
=== "Example 2"
=== "Predict"
Predict a YouTube video using a pretrained segmentation model at image size 320:
```bash
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
```
=== "Example 3"
=== "Val"
Validate a pretrained detection model at batch-size 1 and image size 640:
```bash
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640