README and Docs updates (#166)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
5e290e0d28
commit
cb4801888e
6 changed files with 311 additions and 66 deletions
274
README.md
274
README.md
|
|
@ -1,76 +1,230 @@
|
|||
[](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml)
|
||||
<div align="center">
|
||||
<p>
|
||||
<a align="center" href="https://ultralytics.com/yolov8" target="_blank">
|
||||
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
|
||||
</p>
|
||||
|
||||
## Install
|
||||
[English](README.md) | [简体中文](README.zh-CN.md)
|
||||
<br>
|
||||
|
||||
<div>
|
||||
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
<br>
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
||||
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
</div>
|
||||
<br>
|
||||
|
||||
[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics) is the latest version of the YOLO object detection and image segmentation model developed by [Ultralytics](https://ultralytics.com). YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility.
|
||||
|
||||
The YOLOv8 models are designed to be fast, accurate, and easy to use, making them an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
|
||||
|
||||
Whether you are a seasoned machine learning practitioner or new to the field, we hope that the resources on this page will help you get the most out of YOLOv8.
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## <div align="center">Documentation</div>
|
||||
|
||||
See below for quickstart intallation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
|
||||
|
||||
<details open>
|
||||
<summary>Install</summary>
|
||||
|
||||
Pip install the ultralytics package including all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a
|
||||
[**Python>=3.7.0**](https://www.python.org/) environment, including
|
||||
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
|
||||
|
||||
```bash
|
||||
pip install ultralytics
|
||||
```
|
||||
|
||||
Development
|
||||
</details>
|
||||
|
||||
```
|
||||
git clone https://github.com/ultralytics/ultralytics
|
||||
cd ultralytics
|
||||
pip install -e .
|
||||
```
|
||||
<details open>
|
||||
<summary>Usage</summary>
|
||||
|
||||
## Usage
|
||||
|
||||
### 1. CLI
|
||||
|
||||
To simply use the latest Ultralytics YOLO models
|
||||
|
||||
```bash
|
||||
yolo task=detect mode=train model=yolov8n.yaml args=...
|
||||
classify predict yolov8n-cls.yaml args=...
|
||||
segment val yolov8n-seg.yaml args=...
|
||||
export yolov8n.pt format=onnx
|
||||
```
|
||||
|
||||
### 2. Python SDK
|
||||
|
||||
To use pythonic interface of Ultralytics YOLO model
|
||||
YOLOv8 may be used in a python environment:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.yaml") # create a new model from scratch
|
||||
model = YOLO(
|
||||
"yolov8n.pt"
|
||||
) # load a pretrained model (recommended for best training results)
|
||||
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
|
||||
results = model.val()
|
||||
results = model.predict(source="bus.jpg")
|
||||
success = model.export(format="onnx")
|
||||
model = YOLO("yolov8n.pt") # load a pretrained YOLOv8n model
|
||||
|
||||
model.train(data="coco128.yaml") # train the model
|
||||
model.val() # evaluate model performance on the validation set
|
||||
model.predict(source="https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
model.export(format="onnx") # export the model to ONNX format
|
||||
```
|
||||
|
||||
## Models
|
||||
Or with CLI `yolo` commands:
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU<br>(ms) | Speed<br><sup>T4 GPU<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ------------------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | - | - | **1.9** | **4.5** |
|
||||
| [YOLOv6n](url) | 640 | 35.9 | - | - | 4.3 | 11.1 |
|
||||
| **[YOLOv8n](url)** | 640 | **37.3** | - | - | 3.2 | 8.9 |
|
||||
| | | | | | | |
|
||||
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | - | - | 7.2 | 16.5 |
|
||||
| [YOLOv6s](url) | 640 | 43.5 | - | - | 17.2 | 44.2 |
|
||||
| **[YOLOv8s](url)** | 640 | **44.9** | - | - | 11.2 | 28.8 |
|
||||
| | | | | | | |
|
||||
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | - | - | 21.2 | 49.0 |
|
||||
| [YOLOv6m](url) | 640 | 49.5 | - | - | 34.3 | 82.2 |
|
||||
| **[YOLOv8m](url)** | 640 | **50.2** | - | - | 25.9 | 79.3 |
|
||||
| | | | | | | |
|
||||
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | - | - | 46.5 | 109.1 |
|
||||
| [YOLOv6l](url) | 640 | 52.5 | - | - | 58.5 | 144.0 |
|
||||
| [YOLOv7](url) | 640 | 51.2 | - | - | 36.9 | 104.7 |
|
||||
| **[YOLOv8l](url)** | 640 | **52.9** | - | - | 43.7 | 165.7 |
|
||||
| | | | | | | |
|
||||
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | - | - | 86.7 | 205.7 |
|
||||
| [YOLOv7-X](url) | 640 | 52.9 | - | - | 71.3 | 189.9 |
|
||||
| **[YOLOv8x](url)** | 640 | **53.9** | - | - | 68.2 | 258.5 |
|
||||
| | | | | | | |
|
||||
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt) | 1280 | 55.0 | - | - | 140.7 | 839.2 |
|
||||
| [YOLOv7-E6E](url) | 1280 | 56.8 | - | - | 151.7 | 843.2 |
|
||||
| **[YOLOv8x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)**<br>+TTA | 1280 | -<br>- | -<br>- | -<br>- | 97.4 | 1047.2<br>- |
|
||||
```bash
|
||||
yolo task=detect mode=train model=yolov8n.pt args...
|
||||
classify predict yolov8n-cls.yaml args...
|
||||
segment val yolov8n-seg.yaml args...
|
||||
export yolov8n.pt format=onnx args...
|
||||
```
|
||||
|
||||
If you're looking to modify YOLO for R&D or to build on top of it, refer to [Using Trainer](<>) Guide on our docs.
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/yolo/v8/models) download automatically from the latest
|
||||
Ultralytics [release](https://github.com/ultralytics/ultralytics/releases).
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Checkpoints</div>
|
||||
|
||||
All YOLOv8 pretrained models are available here. Detection and Segmentation models are pretrained on the COCO dataset, while Classification models are pretrained on the ImageNet dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/yolo/v8/models) download automatically from the latest
|
||||
Ultralytics [release](https://github.com/ultralytics/ultralytics/releases) on first use.
|
||||
|
||||
<details open><summary>Detection</summary>
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU<br>(ms) | Speed<br><sup>T4 GPU<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n.pt) | 640 | 37.3 | - | - | 3.2 | 8.7 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s.pt) | 640 | 44.9 | - | - | 11.2 | 28.6 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m.pt) | 640 | 50.2 | - | - | 25.9 | 78.9 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l.pt) | 640 | 52.9 | - | - | 43.7 | 165.2 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x.pt) | 640 | 53.9 | - | - | 68.2 | 257.8 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
|
||||
<br>Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
|
||||
<br>Reproduce by `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>Segmentation</summary>
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU<br>(ms) | Speed<br><sup>T4 GPU<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| --------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | - | - | 3.4 | 12.6 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | - | - | 11.8 | 42.6 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | - | - | 27.3 | 110.2 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | - | - | 46.0 | 220.5 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | - | - | 71.8 | 344.1 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
|
||||
<br>Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
|
||||
<br>Reproduce by `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>Classification</summary>
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU<br>(ms) | Speed<br><sup>T4 GPU<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
| --------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------- | ---------------------------- | ------------------ | ------------------------ |
|
||||
| [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | - | - | 2.7 | 4.3 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | - | - | 6.4 | 13.5 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | - | - | 17.0 | 42.7 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | - | - | 37.5 | 99.7 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | - | - | 57.4 | 154.8 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [ImageNet](https://www.image-net.org/) dataset.
|
||||
<br>Reproduce by `yolo mode=val task=detect data=coco.yaml device=0`
|
||||
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
|
||||
<br>Reproduce by `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Integrations</div>
|
||||
|
||||
<br>
|
||||
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
|
||||
<br>
|
||||
<br>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://roboflow.com/?ref=ultralytics">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://cutt.ly/yolov5-readme-clearml">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://bit.ly/yolov5-readme-comet">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-comet.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://bit.ly/yolov5-neuralmagic">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-neuralmagic.png" width="10%" /></a>
|
||||
</div>
|
||||
|
||||
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
||||
| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
||||
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv8 models, resume training, and interactively visualise and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
||||
|
||||
## <div align="center">Ultralytics HUB</div>
|
||||
|
||||
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv8 🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now! Also run YOLOv8 models on your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
|
||||
|
||||
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
||||
|
||||
## <div align="center">Contribute</div>
|
||||
|
||||
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
||||
|
||||
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
||||
|
||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png"/></a>
|
||||
|
||||
## <div align="center">License</div>
|
||||
|
||||
YOLOv8 is available under two different licenses:
|
||||
|
||||
- **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for details.
|
||||
- **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
|
||||
|
||||
## <div align="center">Contact</div>
|
||||
|
||||
For YOLOv8 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). For professional support please [Contact Us](https://ultralytics.com/contact).
|
||||
|
||||
<br>
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
|
||||
</div>
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue