ultralytics 8.0.151 add DOTAv2.yaml for OBB training (#4258)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
a76af55533
commit
c9be1f3cce
46 changed files with 805 additions and 303 deletions
|
|
@ -53,7 +53,7 @@ To train a YOLOv8n-pose model on the COCO-Pose dataset for 100 epochs with an im
|
|||
model = YOLO('yolov8n-pose.pt') # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
model.train(data='coco-pose.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data='coco-pose.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -77,15 +77,19 @@ The example showcases the variety and complexity of the images in the COCO-Pose
|
|||
|
||||
If you use the COCO-Pose dataset in your research or development work, please cite the following paper:
|
||||
|
||||
```bibtex
|
||||
@misc{lin2015microsoft,
|
||||
title={Microsoft COCO: Common Objects in Context},
|
||||
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
|
||||
year={2015},
|
||||
eprint={1405.0312},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
```
|
||||
!!! note ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
```bibtex
|
||||
@misc{lin2015microsoft,
|
||||
title={Microsoft COCO: Common Objects in Context},
|
||||
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
|
||||
year={2015},
|
||||
eprint={1405.0312},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
```
|
||||
|
||||
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO-Pose dataset and its creators, visit the [COCO dataset website](https://cocodataset.org/#home).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue