ultralytics 8.0.151 add DOTAv2.yaml for OBB training (#4258)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
a76af55533
commit
c9be1f3cce
46 changed files with 805 additions and 303 deletions
|
|
@ -53,7 +53,7 @@ To train a YOLOv8n model on the SKU-110K dataset for 100 epochs with an image si
|
|||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
model.train(data='SKU-110K.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data='SKU-110K.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -77,13 +77,17 @@ The example showcases the variety and complexity of the data in the SKU-110k dat
|
|||
|
||||
If you use the SKU-110k dataset in your research or development work, please cite the following paper:
|
||||
|
||||
```bibtex
|
||||
@inproceedings{goldman2019dense,
|
||||
author = {Eran Goldman and Roei Herzig and Aviv Eisenschtat and Jacob Goldberger and Tal Hassner},
|
||||
title = {Precise Detection in Densely Packed Scenes},
|
||||
booktitle = {Proc. Conf. Comput. Vision Pattern Recognition (CVPR)},
|
||||
year = {2019}
|
||||
}
|
||||
```
|
||||
!!! note ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
```bibtex
|
||||
@inproceedings{goldman2019dense,
|
||||
author = {Eran Goldman and Roei Herzig and Aviv Eisenschtat and Jacob Goldberger and Tal Hassner},
|
||||
title = {Precise Detection in Densely Packed Scenes},
|
||||
booktitle = {Proc. Conf. Comput. Vision Pattern Recognition (CVPR)},
|
||||
year = {2019}
|
||||
}
|
||||
```
|
||||
|
||||
We would like to acknowledge Eran Goldman et al. for creating and maintaining the SKU-110k dataset as a valuable resource for the computer vision research community. For more information about the SKU-110k dataset and its creators, visit the [SKU-110k dataset GitHub repository](https://github.com/eg4000/SKU110K_CVPR19).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue