ultralytics 8.0.151 add DOTAv2.yaml for OBB training (#4258)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
a76af55533
commit
c9be1f3cce
46 changed files with 805 additions and 303 deletions
|
|
@ -39,7 +39,7 @@ To train a YOLO model on the Caltech-101 dataset for 100 epochs, you can use the
|
|||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
model.train(data='caltech101', epochs=100, imgsz=416)
|
||||
results = model.train(data='caltech101', epochs=100, imgsz=416)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -61,17 +61,21 @@ The example showcases the variety and complexity of the objects in the Caltech-1
|
|||
|
||||
If you use the Caltech-101 dataset in your research or development work, please cite the following paper:
|
||||
|
||||
```bibtex
|
||||
@article{fei2007learning,
|
||||
title={Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories},
|
||||
author={Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
|
||||
journal={Computer vision and Image understanding},
|
||||
volume={106},
|
||||
number={1},
|
||||
pages={59--70},
|
||||
year={2007},
|
||||
publisher={Elsevier}
|
||||
}
|
||||
```
|
||||
!!! note ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
```bibtex
|
||||
@article{fei2007learning,
|
||||
title={Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories},
|
||||
author={Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
|
||||
journal={Computer vision and Image understanding},
|
||||
volume={106},
|
||||
number={1},
|
||||
pages={59--70},
|
||||
year={2007},
|
||||
publisher={Elsevier}
|
||||
}
|
||||
```
|
||||
|
||||
We would like to acknowledge Li Fei-Fei, Rob Fergus, and Pietro Perona for creating and maintaining the Caltech-101 dataset as a valuable resource for the machine learning and computer vision research community. For more information about the Caltech-101 dataset and its creators, visit the [Caltech-101 dataset website](https://data.caltech.edu/records/mzrjq-6wc02).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue