Update FastSAM and SAM docs (#14499)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
81544c6d71
commit
c87600037d
2 changed files with 15 additions and 7 deletions
|
|
@ -56,10 +56,10 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
|
|||
model.info()
|
||||
|
||||
# Run inference with bboxes prompt
|
||||
model("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709])
|
||||
results = model("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709])
|
||||
|
||||
# Run inference with points prompt
|
||||
model("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])
|
||||
results = model("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])
|
||||
```
|
||||
|
||||
!!! Example "Segment everything"
|
||||
|
|
@ -128,6 +128,10 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
|
|||
results = predictor(source="ultralytics/assets/zidane.jpg", crop_n_layers=1, points_stride=64)
|
||||
```
|
||||
|
||||
!!! Note
|
||||
|
||||
All the returned `results` in above examples are [Results](../modes/predict.md#working-with-results) object which allows access predicted masks and source image easily.
|
||||
|
||||
- More additional args for `Segment everything` see [`Predictor/generate` Reference](../reference/models/sam/predict.md).
|
||||
|
||||
## SAM comparison vs YOLOv8
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue