Add pred, export and val callbacks (#126)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ayush Chaurasia 2023-01-01 22:46:10 +05:30 committed by GitHub
parent 63c7a74691
commit c6eb6720de
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 176 additions and 57 deletions

View file

@ -1,4 +1,5 @@
import json
from collections import defaultdict
from pathlib import Path
import torch
@ -8,6 +9,7 @@ from tqdm import tqdm
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT
from ultralytics.yolo.utils.callbacks import default_callbacks
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.ops import Profile
@ -64,12 +66,18 @@ class BaseValidator:
exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# callbacks
self.callbacks = defaultdict(list)
for callback, func in default_callbacks.items():
self.add_callback(callback, func)
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.run_callbacks('on_val_start')
self.training = trainer is not None
if self.training:
self.device = trainer.device
@ -116,6 +124,7 @@ class BaseValidator:
self.init_metrics(de_parallel(model))
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.run_callbacks('on_val_batch_start')
self.batch_i = batch_i
# pre-process
with dt[0]:
@ -139,10 +148,12 @@ class BaseValidator:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
self.run_callbacks('on_val_batch_end')
stats = self.get_stats()
self.check_stats(stats)
self.print_results()
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
self.run_callbacks('on_val_end')
if self.training:
model.float()
return {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
@ -156,6 +167,22 @@ class BaseValidator:
stats = self.eval_json(stats) # update stats
return stats
def add_callback(self, event: str, callback):
"""
appends the given callback
"""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""
overrides the existing callbacks with the given callback
"""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)
def get_dataloader(self, dataset_path, batch_size):
raise NotImplementedError("get_dataloader function not implemented for this validator")