Add pred, export and val callbacks (#126)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ayush Chaurasia 2023-01-01 22:46:10 +05:30 committed by GitHub
parent 63c7a74691
commit c6eb6720de
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 176 additions and 57 deletions

View file

@ -136,20 +136,20 @@ class BaseTrainer:
if RANK in {0, -1}:
callbacks.add_integration_callbacks(self)
def add_callback(self, onevent: str, callback):
def add_callback(self, event: str, callback):
"""
appends the given callback
"""
self.callbacks[onevent].append(callback)
self.callbacks[event].append(callback)
def set_callback(self, onevent: str, callback):
def set_callback(self, event: str, callback):
"""
overrides the existing callbacks with the given callback
"""
self.callbacks[onevent] = [callback]
self.callbacks[event] = [callback]
def trigger_callbacks(self, onevent: str):
for callback in self.callbacks.get(onevent, []):
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)
def train(self):
@ -178,7 +178,7 @@ class BaseTrainer:
Builds dataloaders and optimizer on correct rank process
"""
# model
self.trigger_callbacks("on_pretrain_routine_start")
self.run_callbacks("on_pretrain_routine_start")
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
@ -210,7 +210,7 @@ class BaseTrainer:
metric_keys = self.validator.metric_keys + self.label_loss_items(prefix="val")
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
self.ema = ModelEMA(self.model)
self.trigger_callbacks("on_pretrain_routine_end")
self.run_callbacks("on_pretrain_routine_end")
def _do_train(self, rank=-1, world_size=1):
if world_size > 1:
@ -224,14 +224,14 @@ class BaseTrainer:
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
last_opt_step = -1
self.trigger_callbacks("on_train_start")
self.run_callbacks("on_train_start")
self.log(f"Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n"
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
f"Logging results to {colorstr('bold', self.save_dir)}\n"
f"Starting training for {self.epochs} epochs...")
for epoch in range(self.start_epoch, self.epochs):
self.epoch = epoch
self.trigger_callbacks("on_train_epoch_start")
self.run_callbacks("on_train_epoch_start")
self.model.train()
if rank != -1:
self.train_loader.sampler.set_epoch(epoch)
@ -242,7 +242,7 @@ class BaseTrainer:
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.trigger_callbacks("on_train_batch_start")
self.run_callbacks("on_train_batch_start")
# Update dataloader attributes (optional)
if epoch == (self.epochs - self.args.close_mosaic) and hasattr(self.train_loader.dataset, 'mosaic'):
@ -287,35 +287,34 @@ class BaseTrainer:
pbar.set_description(
('%11s' * 2 + '%11.4g' * (2 + loss_len)) %
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1]))
self.trigger_callbacks('on_batch_end')
self.run_callbacks('on_batch_end')
if self.args.plots and ni < 3:
self.plot_training_samples(batch, ni)
self.trigger_callbacks("on_train_batch_end")
self.run_callbacks("on_train_batch_end")
lr = {f"lr{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.scheduler.step()
self.trigger_callbacks("on_train_epoch_end")
self.run_callbacks("on_train_epoch_end")
if rank in {-1, 0}:
# Validation
self.trigger_callbacks('on_val_start')
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
final_epoch = (epoch + 1 == self.epochs)
if self.args.val or final_epoch:
self.metrics, self.fitness = self.validate()
self.trigger_callbacks('on_val_end')
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **lr})
# Save model
if self.args.save or (epoch + 1 == self.epochs):
self.save_model()
self.trigger_callbacks('on_model_save')
self.run_callbacks('on_model_save')
tnow = time.time()
self.epoch_time = tnow - self.epoch_time_start
self.epoch_time_start = tnow
self.run_callbacks("on_fit_epoch_end")
# TODO: termination condition
if rank in {-1, 0}:
@ -326,9 +325,9 @@ class BaseTrainer:
if self.args.plots:
self.plot_metrics()
self.log(f"Results saved to {colorstr('bold', self.save_dir)}")
self.trigger_callbacks('on_train_end')
self.run_callbacks('on_train_end')
torch.cuda.empty_cache()
self.trigger_callbacks('teardown')
self.run_callbacks('teardown')
def save_model(self):
ckpt = {
@ -470,7 +469,7 @@ class BaseTrainer:
self.validator.args.save_json = True
self.metrics = self.validator(model=f)
self.metrics.pop('fitness', None)
self.trigger_callbacks('on_val_end')
self.run_callbacks('on_val_end')
def check_resume(self):
resume = self.args.resume