New YOLOv8 Results() class for prediction outputs (#314)
Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Viet Nhat Thai <60825385+vietnhatthai@users.noreply.github.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com>
This commit is contained in:
parent
0cb87f7dd3
commit
c6985da9de
32 changed files with 813 additions and 259 deletions
284
ultralytics/yolo/engine/results.py
Normal file
284
ultralytics/yolo/engine/results.py
Normal file
|
|
@ -0,0 +1,284 @@
|
|||
from functools import lru_cache
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, ops
|
||||
|
||||
|
||||
class Results:
|
||||
"""
|
||||
A class for storing and manipulating inference results.
|
||||
|
||||
Args:
|
||||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
|
||||
Attributes:
|
||||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
"""
|
||||
|
||||
def __init__(self, boxes=None, masks=None, probs=None, orig_shape=None) -> None:
|
||||
self.boxes = Boxes(boxes, orig_shape) if boxes is not None else None # native size boxes
|
||||
self.masks = Masks(masks, orig_shape) if masks is not None else None # native size or imgsz masks
|
||||
self.probs = probs.softmax(0) if probs is not None else None
|
||||
self.orig_shape = orig_shape
|
||||
self.comp = ["boxes", "masks", "probs"]
|
||||
|
||||
def pandas(self):
|
||||
pass
|
||||
# TODO masks.pandas + boxes.pandas + cls.pandas
|
||||
|
||||
def __getitem__(self, idx):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
setattr(r, item, getattr(self, item)[idx])
|
||||
return r
|
||||
|
||||
def cpu(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
setattr(r, item, getattr(self, item).cpu())
|
||||
return r
|
||||
|
||||
def numpy(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
setattr(r, item, getattr(self, item).numpy())
|
||||
return r
|
||||
|
||||
def cuda(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
setattr(r, item, getattr(self, item).cuda())
|
||||
return r
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
setattr(r, item, getattr(self, item).to(*args, **kwargs))
|
||||
return r
|
||||
|
||||
def __len__(self):
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
return len(getattr(self, item))
|
||||
|
||||
def __str__(self):
|
||||
return self.__repr__()
|
||||
|
||||
def __repr__(self):
|
||||
s = f'Ultralytics YOLO {self.__class__} instance\n' # string
|
||||
if self.boxes:
|
||||
s = s + self.boxes.__repr__() + '\n'
|
||||
if self.masks:
|
||||
s = s + self.masks.__repr__() + '\n'
|
||||
if self.probs:
|
||||
s = s + self.probs.__repr__()
|
||||
s += f'original size: {self.orig_shape}\n'
|
||||
|
||||
return s
|
||||
|
||||
|
||||
class Boxes:
|
||||
"""
|
||||
A class for storing and manipulating detection boxes.
|
||||
|
||||
Args:
|
||||
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
||||
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
|
||||
orig_shape (tuple): Original image size, in the format (height, width).
|
||||
|
||||
Attributes:
|
||||
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
||||
with shape (num_boxes, 6).
|
||||
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
|
||||
|
||||
Properties:
|
||||
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
|
||||
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
|
||||
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
|
||||
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
||||
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
||||
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
||||
"""
|
||||
|
||||
def __init__(self, boxes, orig_shape) -> None:
|
||||
if boxes.ndim == 1:
|
||||
boxes = boxes[None, :]
|
||||
assert boxes.shape[-1] == 6 # xyxy, conf, cls
|
||||
self.boxes = boxes
|
||||
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \
|
||||
else np.asarray(orig_shape)
|
||||
|
||||
@property
|
||||
def xyxy(self):
|
||||
return self.boxes[:, :4]
|
||||
|
||||
@property
|
||||
def conf(self):
|
||||
return self.boxes[:, -2]
|
||||
|
||||
@property
|
||||
def cls(self):
|
||||
return self.boxes[:, -1]
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2) # maxsize 1 should suffice
|
||||
def xywh(self):
|
||||
return ops.xyxy2xywh(self.xyxy)
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2)
|
||||
def xyxyn(self):
|
||||
return self.xyxy / self.orig_shape[[1, 0, 1, 0]]
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2)
|
||||
def xywhn(self):
|
||||
return self.xywh / self.orig_shape[[1, 0, 1, 0]]
|
||||
|
||||
def cpu(self):
|
||||
boxes = self.boxes.cpu()
|
||||
return Boxes(boxes, self.orig_shape)
|
||||
|
||||
def numpy(self):
|
||||
boxes = self.boxes.numpy()
|
||||
return Boxes(boxes, self.orig_shape)
|
||||
|
||||
def cuda(self):
|
||||
boxes = self.boxes.cuda()
|
||||
return Boxes(boxes, self.orig_shape)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
boxes = self.boxes.to(*args, **kwargs)
|
||||
return Boxes(boxes, self.orig_shape)
|
||||
|
||||
def pandas(self):
|
||||
LOGGER.info('results.pandas() method not yet implemented')
|
||||
'''
|
||||
new = copy(self) # return copy
|
||||
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
||||
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
||||
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
||||
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
||||
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
||||
return new
|
||||
'''
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self.boxes.shape
|
||||
|
||||
def __len__(self): # override len(results)
|
||||
return len(self.boxes)
|
||||
|
||||
def __str__(self):
|
||||
return self.__repr__()
|
||||
|
||||
def __repr__(self):
|
||||
return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.boxes)}\n" +
|
||||
f"shape: {self.boxes.shape}\n" + f"dtype: {self.boxes.dtype}")
|
||||
|
||||
def __getitem__(self, idx):
|
||||
boxes = self.boxes[idx]
|
||||
return Boxes(boxes, self.orig_shape)
|
||||
|
||||
|
||||
class Masks:
|
||||
"""
|
||||
A class for storing and manipulating detection masks.
|
||||
|
||||
Args:
|
||||
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
|
||||
orig_shape (tuple): Original image size, in the format (height, width).
|
||||
|
||||
Attributes:
|
||||
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
|
||||
orig_shape (tuple): Original image size, in the format (height, width).
|
||||
|
||||
Properties:
|
||||
segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks.
|
||||
"""
|
||||
|
||||
def __init__(self, masks, orig_shape) -> None:
|
||||
self.masks = masks # N, h, w
|
||||
self.orig_shape = orig_shape
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def segments(self):
|
||||
return [
|
||||
ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True)
|
||||
for x in reversed(ops.masks2segments(self.masks))]
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self.masks.shape
|
||||
|
||||
def cpu(self):
|
||||
masks = self.masks.cpu()
|
||||
return Masks(masks, self.orig_shape)
|
||||
|
||||
def numpy(self):
|
||||
masks = self.masks.numpy()
|
||||
return Masks(masks, self.orig_shape)
|
||||
|
||||
def cuda(self):
|
||||
masks = self.masks.cuda()
|
||||
return Masks(masks, self.orig_shape)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
masks = self.masks.to(*args, **kwargs)
|
||||
return Masks(masks, self.orig_shape)
|
||||
|
||||
def __len__(self): # override len(results)
|
||||
return len(self.masks)
|
||||
|
||||
def __str__(self):
|
||||
return self.__repr__()
|
||||
|
||||
def __repr__(self):
|
||||
return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.masks)}\n" +
|
||||
f"shape: {self.masks.shape}\n" + f"dtype: {self.masks.dtype}")
|
||||
|
||||
def __getitem__(self, idx):
|
||||
masks = self.masks[idx]
|
||||
return Masks(masks, self.im_shape, self.orig_shape)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test examples
|
||||
results = Results(boxes=torch.randn((2, 6)), masks=torch.randn((2, 160, 160)), orig_shape=[640, 640])
|
||||
results = results.cuda()
|
||||
print("--cuda--pass--")
|
||||
results = results.cpu()
|
||||
print("--cpu--pass--")
|
||||
results = results.to("cuda:0")
|
||||
print("--to-cuda--pass--")
|
||||
results = results.to("cpu")
|
||||
print("--to-cpu--pass--")
|
||||
results = results.numpy()
|
||||
print("--numpy--pass--")
|
||||
# box = Boxes(boxes=torch.randn((2, 6)), orig_shape=[5, 5])
|
||||
# box = box.cuda()
|
||||
# box = box.cpu()
|
||||
# box = box.numpy()
|
||||
# for b in box:
|
||||
# print(b)
|
||||
Loading…
Add table
Add a link
Reference in a new issue