ultralytics 8.0.12 - Hydra removal (#506)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Pronoy Mandal <lukex9442@gmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
parent
6eec39162a
commit
c5fccc3fc4
37 changed files with 395 additions and 469 deletions
|
|
@ -1,68 +1,68 @@
|
|||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Default training settings and hyperparameters for medium-augmentation COCO training
|
||||
|
||||
task: "detect" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case. Specify task to run.
|
||||
mode: "train" # choices=['train', 'val', 'predict'] # mode to run task in.
|
||||
task: "detect" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case. Specify task to run.
|
||||
mode: "train" # choices=['train', 'val', 'predict'] # mode to run task in.
|
||||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: null # i.e. yolov8n.pt, yolov8n.yaml. Path to model file
|
||||
data: null # i.e. coco128.yaml. Path to data file
|
||||
epochs: 100 # number of epochs to train for
|
||||
model: null # i.e. yolov8n.pt, yolov8n.yaml. Path to model file
|
||||
data: null # i.e. coco128.yaml. Path to data file
|
||||
epochs: 100 # number of epochs to train for
|
||||
patience: 50 # epochs to wait for no observable improvement for early stopping of training
|
||||
batch: 16 # number of images per batch
|
||||
imgsz: 640 # size of input images
|
||||
save: True # save checkpoints
|
||||
cache: False # True/ram, disk or False. Use cache for data loading
|
||||
device: null # cuda device, i.e. 0 or 0,1,2,3 or cpu. Device to run on
|
||||
workers: 8 # number of worker threads for data loading
|
||||
project: null # project name
|
||||
name: null # experiment name
|
||||
exist_ok: False # whether to overwrite existing experiment
|
||||
pretrained: False # whether to use a pretrained model
|
||||
optimizer: 'SGD' # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
||||
verbose: False # whether to print verbose output
|
||||
seed: 0 # random seed for reproducibility
|
||||
deterministic: True # whether to enable deterministic mode
|
||||
single_cls: False # train multi-class data as single-class
|
||||
image_weights: False # use weighted image selection for training
|
||||
rect: False # support rectangular training
|
||||
cos_lr: False # use cosine learning rate scheduler
|
||||
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs
|
||||
resume: False # resume training from last checkpoint
|
||||
batch: 16 # number of images per batch
|
||||
imgsz: 640 # size of input images
|
||||
save: True # save checkpoints
|
||||
cache: False # True/ram, disk or False. Use cache for data loading
|
||||
device: null # cuda device, i.e. 0 or 0,1,2,3 or cpu. Device to run on
|
||||
workers: 8 # number of worker threads for data loading
|
||||
project: null # project name
|
||||
name: null # experiment name
|
||||
exist_ok: False # whether to overwrite existing experiment
|
||||
pretrained: False # whether to use a pretrained model
|
||||
optimizer: 'SGD' # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
||||
verbose: False # whether to print verbose output
|
||||
seed: 0 # random seed for reproducibility
|
||||
deterministic: True # whether to enable deterministic mode
|
||||
single_cls: False # train multi-class data as single-class
|
||||
image_weights: False # use weighted image selection for training
|
||||
rect: False # support rectangular training
|
||||
cos_lr: False # use cosine learning rate scheduler
|
||||
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs
|
||||
resume: False # resume training from last checkpoint
|
||||
# Segmentation
|
||||
overlap_mask: True # masks should overlap during training
|
||||
mask_ratio: 4 # mask downsample ratio
|
||||
overlap_mask: True # masks should overlap during training
|
||||
mask_ratio: 4 # mask downsample ratio
|
||||
# Classification
|
||||
dropout: 0.0 # use dropout regularization
|
||||
|
||||
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
||||
val: True # validate/test during training
|
||||
save_json: False # save results to JSON file
|
||||
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
||||
conf: null # object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||||
iou: 0.7 # intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # maximum number of detections per image
|
||||
half: False # use half precision (FP16)
|
||||
dnn: False # use OpenCV DNN for ONNX inference
|
||||
plots: True # show plots during training
|
||||
val: True # validate/test during training
|
||||
save_json: False # save results to JSON file
|
||||
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
||||
conf: null # object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||||
iou: 0.7 # intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # maximum number of detections per image
|
||||
half: False # use half precision (FP16)
|
||||
dnn: False # use OpenCV DNN for ONNX inference
|
||||
plots: True # show plots during training
|
||||
|
||||
# Prediction settings --------------------------------------------------------------------------------------------------
|
||||
source: null # source directory for images or videos
|
||||
show: False # show results if possible
|
||||
save_txt: False # save results as .txt file
|
||||
save_conf: False # save results with confidence scores
|
||||
save_crop: False # save cropped images with results
|
||||
hide_labels: False # hide labels
|
||||
hide_conf: False # hide confidence scores
|
||||
vid_stride: 1 # video frame-rate stride
|
||||
line_thickness: 3 # bounding box thickness (pixels)
|
||||
visualize: False # visualize results
|
||||
augment: False # apply data augmentation to images
|
||||
agnostic_nms: False # class-agnostic NMS
|
||||
retina_masks: False # use retina masks for object detection
|
||||
source: null # source directory for images or videos
|
||||
show: False # show results if possible
|
||||
save_txt: False # save results as .txt file
|
||||
save_conf: False # save results with confidence scores
|
||||
save_crop: False # save cropped images with results
|
||||
hide_labels: False # hide labels
|
||||
hide_conf: False # hide confidence scores
|
||||
vid_stride: 1 # video frame-rate stride
|
||||
line_thickness: 3 # bounding box thickness (pixels)
|
||||
visualize: False # visualize results
|
||||
augment: False # apply data augmentation to images
|
||||
agnostic_nms: False # class-agnostic NMS
|
||||
retina_masks: False # use retina masks for object detection
|
||||
|
||||
# Export settings ------------------------------------------------------------------------------------------------------
|
||||
format: torchscript # format to export to
|
||||
format: torchscript # format to export to
|
||||
keras: False # use Keras
|
||||
optimize: False # TorchScript: optimize for mobile
|
||||
int8: False # CoreML/TF INT8 quantization
|
||||
|
|
@ -100,12 +100,8 @@ mosaic: 1.0 # image mosaic (probability)
|
|||
mixup: 0.0 # image mixup (probability)
|
||||
copy_paste: 0.0 # segment copy-paste (probability)
|
||||
|
||||
# Hydra configs --------------------------------------------------------------------------------------------------------
|
||||
cfg: null # for overriding defaults.yaml
|
||||
hydra:
|
||||
output_subdir: null # disable hydra directory creation
|
||||
run:
|
||||
dir: .
|
||||
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
||||
cfg: null # for overriding defaults.yaml
|
||||
|
||||
# Debug, do not modify -------------------------------------------------------------------------------------------------
|
||||
v5loader: False # use legacy YOLOv5 dataloader
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue