Metrics and loss structure (#28)

Co-authored-by: Ayush Chaurasia <ayush.chuararsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ayush Chaurasia 2022-10-15 23:09:05 +05:30 committed by GitHub
parent d0b3c9812b
commit c5cb76b356
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 183 additions and 43 deletions

View file

@ -28,20 +28,11 @@ DEFAULT_CONFIG = "defaults.yaml"
class BaseTrainer:
def __init__(
self,
model: str,
data: str,
criterion, # Should we create our own base loss classes? yolo.losses -> v8.losses.clfLoss
validator=None,
config=CONFIG_PATH_ABS / DEFAULT_CONFIG):
def __init__(self, config=CONFIG_PATH_ABS / DEFAULT_CONFIG):
self.console = LOGGER
self.model = model
self.data = data
self.criterion = criterion # ComputeLoss object TODO: create yolo.Loss classes
self.validator = val # Dummy validator
self.model, self.data, self.train, self.hyps = self._get_config(config)
self.validator = None
self.callbacks = defaultdict(list)
self.train, self.hyps = self._get_config(config)
self.console.info(f"Training config: \n train: \n {self.train} \n hyps: \n {self.hyps}") # to debug
# Directories
self.save_dir = utils.increment_path(Path(self.train.project) / self.train.name, exist_ok=self.train.exist_ok)
@ -57,7 +48,7 @@ class BaseTrainer:
self.console.info(f"running on device {self.device}")
self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu')
# Model and Dataloaders. TBD: Should we move this inside trainer?
# Model and Dataloaders.
self.trainset, self.testset = self.get_dataset() # initialize dataset before as nc is needed for model
self.model = self.get_model()
self.model = self.model.to(self.device)
@ -80,9 +71,9 @@ class BaseTrainer:
try:
if isinstance(config, (str, Path)):
config = OmegaConf.load(config)
return config.train, config.hyps
return config.model, config.data, config.train, config.hyps
except KeyError as e:
raise Exception("Missing key(s) in config") from e
raise KeyError("Missing key(s) in config") from e
def add_callback(self, onevent: str, callback):
"""
@ -131,10 +122,9 @@ class BaseTrainer:
self.train_loader = self.get_dataloader(self.trainset, batch_size=self.train.batch_size, rank=rank)
if rank in {0, -1}:
print(" Creating testloader rank :", rank)
# self.test_loader = self.get_dataloader(self.testset,
# batch_size=self.train.batch_size*2,
# rank=rank)
# print("created testloader :", rank)
self.test_loader = self.get_dataloader(self.testset, batch_size=self.train.batch_size * 2, rank=rank)
self.validator = self.get_validator()
print("created testloader :", rank)
def _do_train(self, rank, world_size):
if world_size > 1:
@ -235,11 +225,8 @@ class BaseTrainer:
"""
pass
def set_criterion(self, criterion):
"""
:param criterion: yolo.Loss object.
"""
self.criterion = criterion
def get_validator(self):
pass
def optimizer_step(self):
self.scaler.unscale_(self.optimizer) # unscale gradients
@ -265,6 +252,12 @@ class BaseTrainer:
if not self.best_fitness or self.best_fitness < self.fitness:
self.best_fitness = self.fitness
def build_targets(self, preds, targets):
pass
def criterion(self, preds, targets):
pass
def progress_string(self):
"""
Returns progress string depending on task type.