Replace += with faster list .append() (#13849)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
105edd4dc1
commit
c497732278
1 changed files with 13 additions and 16 deletions
|
|
@ -1223,16 +1223,13 @@ def classify_transforms(
|
|||
else:
|
||||
# Resize the shortest edge to matching target dim for non-square target
|
||||
tfl = [T.Resize(scale_size)]
|
||||
tfl += [T.CenterCrop(size)]
|
||||
|
||||
tfl += [
|
||||
T.ToTensor(),
|
||||
T.Normalize(
|
||||
mean=torch.tensor(mean),
|
||||
std=torch.tensor(std),
|
||||
),
|
||||
]
|
||||
|
||||
tfl.extend(
|
||||
[
|
||||
T.CenterCrop(size),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
|
||||
]
|
||||
)
|
||||
return T.Compose(tfl)
|
||||
|
||||
|
||||
|
|
@ -1284,9 +1281,9 @@ def classify_augmentations(
|
|||
ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range
|
||||
primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)]
|
||||
if hflip > 0.0:
|
||||
primary_tfl += [T.RandomHorizontalFlip(p=hflip)]
|
||||
primary_tfl.append(T.RandomHorizontalFlip(p=hflip))
|
||||
if vflip > 0.0:
|
||||
primary_tfl += [T.RandomVerticalFlip(p=vflip)]
|
||||
primary_tfl.append(T.RandomVerticalFlip(p=vflip))
|
||||
|
||||
secondary_tfl = []
|
||||
disable_color_jitter = False
|
||||
|
|
@ -1298,19 +1295,19 @@ def classify_augmentations(
|
|||
|
||||
if auto_augment == "randaugment":
|
||||
if TORCHVISION_0_11:
|
||||
secondary_tfl += [T.RandAugment(interpolation=interpolation)]
|
||||
secondary_tfl.append(T.RandAugment(interpolation=interpolation))
|
||||
else:
|
||||
LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.')
|
||||
|
||||
elif auto_augment == "augmix":
|
||||
if TORCHVISION_0_13:
|
||||
secondary_tfl += [T.AugMix(interpolation=interpolation)]
|
||||
secondary_tfl.append(T.AugMix(interpolation=interpolation))
|
||||
else:
|
||||
LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.')
|
||||
|
||||
elif auto_augment == "autoaugment":
|
||||
if TORCHVISION_0_10:
|
||||
secondary_tfl += [T.AutoAugment(interpolation=interpolation)]
|
||||
secondary_tfl.append(T.AutoAugment(interpolation=interpolation))
|
||||
else:
|
||||
LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.')
|
||||
|
||||
|
|
@ -1321,7 +1318,7 @@ def classify_augmentations(
|
|||
)
|
||||
|
||||
if not disable_color_jitter:
|
||||
secondary_tfl += [T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h)]
|
||||
secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h))
|
||||
|
||||
final_tfl = [
|
||||
T.ToTensor(),
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue