Update to lowercase MkDocs admonitions (#15990)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
ce24c7273e
commit
c2b647a768
133 changed files with 529 additions and 521 deletions
|
|
@ -19,7 +19,7 @@ The YOLO command line interface (CLI) allows for simple single-line commands wit
|
|||
<strong>Watch:</strong> Mastering Ultralytics YOLOv8: CLI
|
||||
</p>
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Syntax"
|
||||
|
||||
|
|
@ -79,7 +79,7 @@ Where:
|
|||
- `MODE` (required) is one of `[train, val, predict, export, track, benchmark]`
|
||||
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml`
|
||||
|
||||
!!! Warning "Warning"
|
||||
!!! warning "Warning"
|
||||
|
||||
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
||||
|
||||
|
|
@ -91,7 +91,7 @@ Where:
|
|||
|
||||
Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](cfg.md) page.
|
||||
|
||||
!!! Example "Example"
|
||||
!!! example "Example"
|
||||
|
||||
=== "Train"
|
||||
|
||||
|
|
@ -111,7 +111,7 @@ Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full
|
|||
|
||||
Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need to passed as the `model` retains its training `data` and arguments as model attributes.
|
||||
|
||||
!!! Example "Example"
|
||||
!!! example "Example"
|
||||
|
||||
=== "Official"
|
||||
|
||||
|
|
@ -131,7 +131,7 @@ Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need t
|
|||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
|
||||
!!! Example "Example"
|
||||
!!! example "Example"
|
||||
|
||||
=== "Official"
|
||||
|
||||
|
|
@ -151,7 +151,7 @@ Use a trained YOLOv8n model to run predictions on images.
|
|||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! Example "Example"
|
||||
!!! example "Example"
|
||||
|
||||
=== "Official"
|
||||
|
||||
|
|
@ -177,7 +177,7 @@ See full `export` details in the [Export](../modes/export.md) page.
|
|||
|
||||
Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs.
|
||||
|
||||
!!! Tip ""
|
||||
!!! tip ""
|
||||
|
||||
=== "Train"
|
||||
|
||||
|
|
@ -208,7 +208,7 @@ To do this first create a copy of `default.yaml` in your current working dir wit
|
|||
|
||||
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, like `imgsz=320` in this example:
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "CLI"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue