Update to lowercase MkDocs admonitions (#15990)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
ce24c7273e
commit
c2b647a768
133 changed files with 529 additions and 521 deletions
|
|
@ -40,7 +40,7 @@ The Ultralytics Python API provides pre-trained PaddlePaddle RT-DETR models with
|
|||
|
||||
This example provides simple RT-DETR training and inference examples. For full documentation on these and other [modes](../modes/index.md) see the [Predict](../modes/predict.md), [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md) docs pages.
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -83,7 +83,7 @@ This table presents the model types, the specific pre-trained weights, the tasks
|
|||
|
||||
If you use Baidu's RT-DETR in your research or development work, please cite the [original paper](https://arxiv.org/abs/2304.08069):
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -110,7 +110,7 @@ Baidu's RT-DETR (Real-Time Detection Transformer) is an advanced real-time objec
|
|||
|
||||
You can leverage Ultralytics Python API to use pre-trained PaddlePaddle RT-DETR models. For instance, to load an RT-DETR-l model pre-trained on COCO val2017 and achieve high FPS on T4 GPU, you can utilize the following example:
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue