Update to lowercase MkDocs admonitions (#15990)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
MatthewNoyce 2024-09-06 16:33:26 +01:00 committed by GitHub
parent ce24c7273e
commit c2b647a768
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
133 changed files with 529 additions and 521 deletions

View file

@ -69,7 +69,7 @@ The process is repeated until either the set number of iterations is reached or
Here's how to use the `model.tune()` method to utilize the `Tuner` class for hyperparameter tuning of YOLOv8n on COCO8 for 30 epochs with an AdamW optimizer and skipping plotting, checkpointing and validation other than on final epoch for faster Tuning.
!!! Example
!!! example
=== "Python"
@ -212,7 +212,7 @@ For deeper insights, you can explore the `Tuner` class source code and accompany
To optimize the learning rate for Ultralytics YOLO, start by setting an initial learning rate using the `lr0` parameter. Common values range from `0.001` to `0.01`. During the hyperparameter tuning process, this value will be mutated to find the optimal setting. You can utilize the `model.tune()` method to automate this process. For example:
!!! Example
!!! example
=== "Python"