Update to lowercase MkDocs admonitions (#15990)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
ce24c7273e
commit
c2b647a768
133 changed files with 529 additions and 521 deletions
|
|
@ -33,7 +33,7 @@ Here is an example of the YOLO dataset format for a single image with two object
|
|||
1 0.504 0.000 0.501 0.004 0.498 0.004 0.493 0.010 0.492 0.0104
|
||||
```
|
||||
|
||||
!!! Tip "Tip"
|
||||
!!! tip "Tip"
|
||||
|
||||
- The length of each row does **not** have to be equal.
|
||||
- Each segmentation label must have a **minimum of 3 xy points**: `<class-index> <x1> <y1> <x2> <y2> <x3> <y3>`
|
||||
|
|
@ -66,7 +66,7 @@ The `train` and `val` fields specify the paths to the directories containing the
|
|||
|
||||
## Usage
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -108,7 +108,7 @@ If you have your own dataset and would like to use it for training segmentation
|
|||
|
||||
You can easily convert labels from the popular COCO dataset format to the YOLO format using the following code snippet:
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -130,7 +130,7 @@ Auto-annotation is an essential feature that allows you to generate a segmentati
|
|||
|
||||
To auto-annotate your dataset using the Ultralytics framework, you can use the `auto_annotate` function as shown below:
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue