Update to lowercase MkDocs admonitions (#15990)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
ce24c7273e
commit
c2b647a768
133 changed files with 529 additions and 521 deletions
|
|
@ -29,7 +29,7 @@ The ImageNette dataset is widely used for training and evaluating deep learning
|
|||
|
||||
To train a model on the ImageNette dataset for 100 epochs with a standard image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -64,7 +64,7 @@ For faster prototyping and training, the ImageNette dataset is also available in
|
|||
|
||||
To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imagenette320' in the training command. The following code snippets illustrate this:
|
||||
|
||||
!!! Example "Train Example with ImageNette160"
|
||||
!!! example "Train Example with ImageNette160"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -85,7 +85,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
yolo classify train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
|
||||
```
|
||||
|
||||
!!! Example "Train Example with ImageNette320"
|
||||
!!! example "Train Example with ImageNette320"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -122,7 +122,7 @@ The [ImageNette dataset](https://github.com/fastai/imagenette) is a simplified s
|
|||
|
||||
To train a YOLO model on the ImageNette dataset for 100 epochs, you can use the following commands. Make sure to have the Ultralytics YOLO environment set up.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -159,7 +159,7 @@ For more details on model training and dataset management, explore the [Dataset
|
|||
|
||||
Yes, the ImageNette dataset is also available in two resized versions: ImageNette160 and ImageNette320. These versions help in faster prototyping and are especially useful when computational resources are limited.
|
||||
|
||||
!!! Example "Train Example with ImageNette160"
|
||||
!!! example "Train Example with ImageNette160"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue