Update to lowercase MkDocs admonitions (#15990)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
ce24c7273e
commit
c2b647a768
133 changed files with 529 additions and 521 deletions
|
|
@ -28,7 +28,7 @@ The Caltech-101 dataset is extensively used for training and evaluating deep lea
|
|||
|
||||
To train a YOLO model on the Caltech-101 dataset for 100 epochs, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -61,7 +61,7 @@ The example showcases the variety and complexity of the objects in the Caltech-1
|
|||
|
||||
If you use the Caltech-101 dataset in your research or development work, please cite the following paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -90,7 +90,7 @@ The [Caltech-101](https://data.caltech.edu/records/mzrjq-6wc02) dataset is widel
|
|||
|
||||
To train an Ultralytics YOLO model on the Caltech-101 dataset, you can use the provided code snippets. For example, to train for 100 epochs:
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -128,7 +128,7 @@ These features make it an excellent choice for training and evaluating object re
|
|||
|
||||
Citing the Caltech-101 dataset in your research acknowledges the creators' contributions and provides a reference for others who might use the dataset. The recommended citation is:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ The Caltech-256 dataset is extensively used for training and evaluating deep lea
|
|||
|
||||
To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -72,7 +72,7 @@ The example showcases the diversity and complexity of the objects in the Caltech
|
|||
|
||||
If you use the Caltech-256 dataset in your research or development work, please cite the following paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -98,7 +98,7 @@ The [Caltech-256](https://data.caltech.edu/records/nyy15-4j048) dataset is a lar
|
|||
|
||||
To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the following code snippets. Refer to the model [Training](../../modes/train.md) page for additional options.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -42,7 +42,7 @@ The CIFAR-10 dataset is widely used for training and evaluating deep learning mo
|
|||
|
||||
To train a YOLO model on the CIFAR-10 dataset for 100 epochs with an image size of 32x32, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -75,7 +75,7 @@ The example showcases the variety and complexity of the objects in the CIFAR-10
|
|||
|
||||
If you use the CIFAR-10 dataset in your research or development work, please cite the following paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -96,7 +96,7 @@ We would like to acknowledge Alex Krizhevsky for creating and maintaining the CI
|
|||
|
||||
To train a YOLO model on the CIFAR-10 dataset using Ultralytics, you can follow the examples provided for both Python and CLI. Here is a basic example to train your model for 100 epochs with an image size of 32x32 pixels:
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -153,7 +153,7 @@ Each subset comprises images categorized into 10 classes, with their annotations
|
|||
|
||||
If you use the CIFAR-10 dataset in your research or development projects, make sure to cite the following paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ The CIFAR-100 dataset is extensively used for training and evaluating deep learn
|
|||
|
||||
To train a YOLO model on the CIFAR-100 dataset for 100 epochs with an image size of 32x32, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -64,7 +64,7 @@ The example showcases the variety and complexity of the objects in the CIFAR-100
|
|||
|
||||
If you use the CIFAR-100 dataset in your research or development work, please cite the following paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -89,7 +89,7 @@ The [CIFAR-100 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) is a large
|
|||
|
||||
You can train a YOLO model on the CIFAR-100 dataset using either Python or CLI commands. Here's how:
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ The Fashion-MNIST dataset is widely used for training and evaluating deep learni
|
|||
|
||||
To train a CNN model on the Fashion-MNIST dataset for 100 epochs with an image size of 28x28, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -99,7 +99,7 @@ The [Fashion-MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset is
|
|||
|
||||
To train an Ultralytics YOLO model on the Fashion-MNIST dataset, you can use both Python and CLI commands. Here's a quick example to get you started:
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -41,7 +41,7 @@ The ImageNet dataset is widely used for training and evaluating deep learning mo
|
|||
|
||||
To train a deep learning model on the ImageNet dataset for 100 epochs with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -74,7 +74,7 @@ The example showcases the variety and complexity of the images in the ImageNet d
|
|||
|
||||
If you use the ImageNet dataset in your research or development work, please cite the following paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -102,7 +102,7 @@ The [ImageNet dataset](https://www.image-net.org/) is a large-scale database con
|
|||
|
||||
To use a pretrained Ultralytics YOLO model for image classification on the ImageNet dataset, follow these steps:
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ The ImageNet10 dataset is useful for quickly testing and debugging computer visi
|
|||
|
||||
To test a deep learning model on the ImageNet10 dataset with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Test Example"
|
||||
!!! example "Test Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -58,7 +58,7 @@ The ImageNet10 dataset contains a subset of images from the original ImageNet da
|
|||
|
||||
If you use the ImageNet10 dataset in your research or development work, please cite the original ImageNet paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -86,7 +86,7 @@ The [ImageNet10](https://github.com/ultralytics/assets/releases/download/v0.0.0/
|
|||
|
||||
To test your deep learning model on the ImageNet10 dataset with an image size of 224x224, use the following code snippets.
|
||||
|
||||
!!! Example "Test Example"
|
||||
!!! example "Test Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ The ImageNette dataset is widely used for training and evaluating deep learning
|
|||
|
||||
To train a model on the ImageNette dataset for 100 epochs with a standard image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -64,7 +64,7 @@ For faster prototyping and training, the ImageNette dataset is also available in
|
|||
|
||||
To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imagenette320' in the training command. The following code snippets illustrate this:
|
||||
|
||||
!!! Example "Train Example with ImageNette160"
|
||||
!!! example "Train Example with ImageNette160"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -85,7 +85,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
yolo classify train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
|
||||
```
|
||||
|
||||
!!! Example "Train Example with ImageNette320"
|
||||
!!! example "Train Example with ImageNette320"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -122,7 +122,7 @@ The [ImageNette dataset](https://github.com/fastai/imagenette) is a simplified s
|
|||
|
||||
To train a YOLO model on the ImageNette dataset for 100 epochs, you can use the following commands. Make sure to have the Ultralytics YOLO environment set up.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -159,7 +159,7 @@ For more details on model training and dataset management, explore the [Dataset
|
|||
|
||||
Yes, the ImageNette dataset is also available in two resized versions: ImageNette160 and ImageNette320. These versions help in faster prototyping and are especially useful when computational resources are limited.
|
||||
|
||||
!!! Example "Train Example with ImageNette160"
|
||||
!!! example "Train Example with ImageNette160"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ The ImageWoof dataset is widely used for training and evaluating deep learning m
|
|||
|
||||
To train a CNN model on the ImageWoof dataset for 100 epochs with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -59,7 +59,7 @@ ImageWoof dataset comes in three different sizes to accommodate various research
|
|||
|
||||
To use these variants in your training, simply replace 'imagewoof' in the dataset argument with 'imagewoof320' or 'imagewoof160'. For example:
|
||||
|
||||
!!! Example "Example"
|
||||
!!! example "Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -109,7 +109,7 @@ The [ImageWoof](https://github.com/fastai/imagenette) dataset is a challenging s
|
|||
|
||||
To train a Convolutional Neural Network (CNN) model on the ImageWoof dataset using Ultralytics YOLO for 100 epochs at an image size of 224x224, you can use the following code:
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -78,7 +78,7 @@ This structured approach ensures that the model can effectively learn from well-
|
|||
|
||||
## Usage
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -194,7 +194,7 @@ For additional insights and real-world applications, you can explore [Ultralytic
|
|||
|
||||
Training a model using Ultralytics YOLO can be done easily in both Python and CLI. Here's an example:
|
||||
|
||||
!!! Example
|
||||
!!! example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ The MNIST dataset is widely used for training and evaluating deep learning model
|
|||
|
||||
To train a CNN model on the MNIST dataset for 100 epochs with an image size of 32x32, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -69,7 +69,7 @@ If you use the MNIST dataset in your
|
|||
|
||||
research or development work, please cite the following paper:
|
||||
|
||||
!!! Quote ""
|
||||
!!! quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -95,7 +95,7 @@ The [MNIST](http://yann.lecun.com/exdb/mnist/) dataset, or Modified National Ins
|
|||
|
||||
To train a model on the MNIST dataset using Ultralytics YOLO, you can follow these steps:
|
||||
|
||||
!!! Example "Train Example"
|
||||
!!! example "Train Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue