ultralytics 8.0.179 base Model class from nn.Module (#4911)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
c8de4fe634
commit
c17106db1f
7 changed files with 101 additions and 56 deletions
|
|
@ -8,15 +8,14 @@ from typing import Union
|
|||
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
|
||||
from ultralytics.hub.utils import HUB_WEB_ROOT
|
||||
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
|
||||
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, callbacks, emojis, yaml_load
|
||||
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, LOGGER, RANK, callbacks, emojis, yaml_load
|
||||
from ultralytics.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
|
||||
from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
|
||||
from ultralytics.utils.torch_utils import smart_inference_mode
|
||||
|
||||
|
||||
class Model:
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
A base model class to unify apis for all the models.
|
||||
A base class to unify APIs for all models.
|
||||
|
||||
Args:
|
||||
model (str, Path): Path to the model file to load or create.
|
||||
|
|
@ -63,6 +62,7 @@ class Model:
|
|||
model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'.
|
||||
task (Any, optional): Task type for the YOLO model. Defaults to None.
|
||||
"""
|
||||
super().__init__()
|
||||
self.callbacks = callbacks.get_default_callbacks()
|
||||
self.predictor = None # reuse predictor
|
||||
self.model = None # model object
|
||||
|
|
@ -116,13 +116,12 @@ class Model:
|
|||
cfg_dict = yaml_model_load(cfg)
|
||||
self.cfg = cfg
|
||||
self.task = task or guess_model_task(cfg_dict)
|
||||
self.model = (model or self.smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model
|
||||
self.model = (model or self._smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model
|
||||
self.overrides['model'] = self.cfg
|
||||
self.overrides['task'] = self.task
|
||||
|
||||
# Below added to allow export from YAMLs
|
||||
args = {**DEFAULT_CFG_DICT, **self.overrides} # combine model and default args, preferring model args
|
||||
self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
|
||||
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args)
|
||||
self.model.task = self.task
|
||||
|
||||
def _load(self, weights: str, task=None):
|
||||
|
|
@ -154,12 +153,13 @@ class Model:
|
|||
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
|
||||
pt_module = isinstance(self.model, nn.Module)
|
||||
if not (pt_module or pt_str):
|
||||
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
|
||||
f'PyTorch models can be used to train, val, predict and export, i.e. '
|
||||
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
|
||||
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
|
||||
raise TypeError(
|
||||
f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. "
|
||||
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
|
||||
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
|
||||
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
|
||||
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'")
|
||||
|
||||
@smart_inference_mode()
|
||||
def reset_weights(self):
|
||||
"""
|
||||
Resets the model modules parameters to randomly initialized values, losing all training information.
|
||||
|
|
@ -172,7 +172,6 @@ class Model:
|
|||
p.requires_grad = True
|
||||
return self
|
||||
|
||||
@smart_inference_mode()
|
||||
def load(self, weights='yolov8n.pt'):
|
||||
"""
|
||||
Transfers parameters with matching names and shapes from 'weights' to model.
|
||||
|
|
@ -199,7 +198,6 @@ class Model:
|
|||
self._check_is_pytorch_model()
|
||||
self.model.fuse()
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, predictor=None, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
|
@ -227,7 +225,7 @@ class Model:
|
|||
prompts = args.pop('prompts', None) # for SAM-type models
|
||||
|
||||
if not self.predictor:
|
||||
self.predictor = (predictor or self.smart_load('predictor'))(overrides=args, _callbacks=self.callbacks)
|
||||
self.predictor = (predictor or self._smart_load('predictor'))(overrides=args, _callbacks=self.callbacks)
|
||||
self.predictor.setup_model(model=self.model, verbose=is_cli)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, args)
|
||||
|
|
@ -258,7 +256,6 @@ class Model:
|
|||
kwargs['mode'] = 'track'
|
||||
return self.predict(source=source, stream=stream, **kwargs)
|
||||
|
||||
@smart_inference_mode()
|
||||
def val(self, validator=None, **kwargs):
|
||||
"""
|
||||
Validate a model on a given dataset.
|
||||
|
|
@ -271,12 +268,11 @@ class Model:
|
|||
args = {**self.overrides, **custom, **kwargs, 'mode': 'val'} # highest priority args on the right
|
||||
args['imgsz'] = check_imgsz(args['imgsz'], max_dim=1)
|
||||
|
||||
validator = (validator or self.smart_load('validator'))(args=args, _callbacks=self.callbacks)
|
||||
validator = (validator or self._smart_load('validator'))(args=args, _callbacks=self.callbacks)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
||||
@smart_inference_mode()
|
||||
def benchmark(self, **kwargs):
|
||||
"""
|
||||
Benchmark a model on all export formats.
|
||||
|
|
@ -333,7 +329,7 @@ class Model:
|
|||
if args.get('resume'):
|
||||
args['resume'] = self.ckpt_path
|
||||
|
||||
self.trainer = (trainer or self.smart_load('trainer'))(overrides=args, _callbacks=self.callbacks)
|
||||
self.trainer = (trainer or self._smart_load('trainer'))(overrides=args, _callbacks=self.callbacks)
|
||||
if not args.get('resume'): # manually set model only if not resuming
|
||||
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
||||
self.model = self.trainer.model
|
||||
|
|
@ -365,15 +361,12 @@ class Model:
|
|||
args = {**self.overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
|
||||
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
|
||||
|
||||
def to(self, device):
|
||||
"""
|
||||
Sends the model to the given device.
|
||||
|
||||
Args:
|
||||
device (str): device
|
||||
"""
|
||||
def _apply(self, fn):
|
||||
"""Apply to(), cpu(), cuda(), half(), float() to model tensors that are not parameters or registered buffers."""
|
||||
self._check_is_pytorch_model()
|
||||
self.model.to(device)
|
||||
self = super()._apply(fn) # noqa
|
||||
self.predictor = None # reset predictor as device may have changed
|
||||
self.overrides['device'] = str(self.device) # i.e. device(type='cuda', index=0) -> 'cuda:0'
|
||||
return self
|
||||
|
||||
@property
|
||||
|
|
@ -410,12 +403,12 @@ class Model:
|
|||
for event in callbacks.default_callbacks.keys():
|
||||
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
# def __getattr__(self, attr):
|
||||
# """Raises error if object has no requested attribute."""
|
||||
# name = self.__class__.__name__
|
||||
# raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def smart_load(self, key):
|
||||
def _smart_load(self, key):
|
||||
"""Load model/trainer/validator/predictor."""
|
||||
try:
|
||||
return self.task_map[self.task][key]
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue