diff --git a/docs/en/models/sam-2.md b/docs/en/models/sam-2.md index d5e8888e..9083899e 100644 --- a/docs/en/models/sam-2.md +++ b/docs/en/models/sam-2.md @@ -250,13 +250,13 @@ To auto-annotate your dataset using SAM 2, follow this example: ```python from ultralytics.data.annotator import auto_annotate - auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam2_b.pt") + auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="sam2_b.pt") ``` | Argument | Type | Description | Default | | ------------ | ----------------------- | ------------------------------------------------------------------------------------------------------- | -------------- | | `data` | `str` | Path to a folder containing images to be annotated. | | -| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. | `'yolov8x.pt'` | +| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolo11x.pt'. | `'yolov8x.pt'` | | `sam_model` | `str`, optional | Pre-trained SAM 2 segmentation model. Defaults to 'sam2_b.pt'. | `'sam2_b.pt'` | | `device` | `str`, optional | Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | | | `output_dir` | `str`, `None`, optional | Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. | `None` | diff --git a/docs/en/models/sam.md b/docs/en/models/sam.md index f9acad72..c38b06e3 100644 --- a/docs/en/models/sam.md +++ b/docs/en/models/sam.md @@ -205,13 +205,13 @@ To auto-annotate your dataset with the Ultralytics framework, use the `auto_anno ```python from ultralytics.data.annotator import auto_annotate - auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam_b.pt") + auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="sam_b.pt") ``` | Argument | Type | Description | Default | | ------------ | --------------------- | ------------------------------------------------------------------------------------------------------- | -------------- | | `data` | `str` | Path to a folder containing images to be annotated. | | -| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. | `'yolov8x.pt'` | +| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolo11x.pt'. | `'yolov8x.pt'` | | `sam_model` | `str`, optional | Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. | `'sam_b.pt'` | | `device` | `str`, optional | Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | | | `output_dir` | `str`, None, optional | Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. | `None` | diff --git a/ultralytics/data/annotator.py b/ultralytics/data/annotator.py index 30d02d9d..3880741d 100644 --- a/ultralytics/data/annotator.py +++ b/ultralytics/data/annotator.py @@ -5,7 +5,7 @@ from pathlib import Path from ultralytics import SAM, YOLO -def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="", output_dir=None): +def auto_annotate(data, det_model="yolo11x.pt", sam_model="sam_b.pt", device="", output_dir=None): """ Automatically annotates images using a YOLO object detection model and a SAM segmentation model.