Optimize speed estimation solution (#16254)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
684519fe52
commit
bf2b221d11
2 changed files with 57 additions and 122 deletions
|
|
@ -72,7 +72,7 @@ keywords: Ultralytics YOLOv8, speed estimation, object tracking, computer vision
|
||||||
print("Video frame is empty or video processing has been successfully completed.")
|
print("Video frame is empty or video processing has been successfully completed.")
|
||||||
break
|
break
|
||||||
|
|
||||||
tracks = model.track(im0, persist=True, show=False)
|
tracks = model.track(im0, persist=True)
|
||||||
|
|
||||||
im0 = speed_obj.estimate_speed(im0, tracks)
|
im0 = speed_obj.estimate_speed(im0, tracks)
|
||||||
video_writer.write(im0)
|
video_writer.write(im0)
|
||||||
|
|
@ -94,7 +94,6 @@ keywords: Ultralytics YOLOv8, speed estimation, object tracking, computer vision
|
||||||
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | List of region points for speed estimation. |
|
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | List of region points for speed estimation. |
|
||||||
| `view_img` | `bool` | `False` | Whether to display the image with annotations. |
|
| `view_img` | `bool` | `False` | Whether to display the image with annotations. |
|
||||||
| `line_thickness` | `int` | `2` | Thickness of the lines for drawing boxes and tracks. |
|
| `line_thickness` | `int` | `2` | Thickness of the lines for drawing boxes and tracks. |
|
||||||
| `region_thickness` | `int` | `5` | Thickness of the region lines. |
|
|
||||||
| `spdl_dist_thresh` | `int` | `10` | Distance threshold for speed calculation. |
|
| `spdl_dist_thresh` | `int` | `10` | Distance threshold for speed calculation. |
|
||||||
|
|
||||||
### Arguments `model.track`
|
### Arguments `model.track`
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ from ultralytics.utils.plotting import Annotator, colors
|
||||||
class SpeedEstimator:
|
class SpeedEstimator:
|
||||||
"""A class to estimate the speed of objects in a real-time video stream based on their tracks."""
|
"""A class to estimate the speed of objects in a real-time video stream based on their tracks."""
|
||||||
|
|
||||||
def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10):
|
def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, spdl_dist_thresh=10):
|
||||||
"""
|
"""
|
||||||
Initializes the SpeedEstimator with the given parameters.
|
Initializes the SpeedEstimator with the given parameters.
|
||||||
|
|
||||||
|
|
@ -22,158 +22,94 @@ class SpeedEstimator:
|
||||||
reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)].
|
reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)].
|
||||||
view_img (bool, optional): Whether to display the image with annotations. Defaults to False.
|
view_img (bool, optional): Whether to display the image with annotations. Defaults to False.
|
||||||
line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2.
|
line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2.
|
||||||
region_thickness (int, optional): Thickness of the region lines. Defaults to 5.
|
|
||||||
spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10.
|
spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10.
|
||||||
"""
|
"""
|
||||||
# Visual & image information
|
|
||||||
self.im0 = None
|
|
||||||
self.annotator = None
|
|
||||||
self.view_img = view_img
|
|
||||||
|
|
||||||
# Region information
|
# Region information
|
||||||
self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)]
|
self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)]
|
||||||
self.region_thickness = region_thickness
|
|
||||||
|
self.names = names # Classes names
|
||||||
|
|
||||||
# Tracking information
|
# Tracking information
|
||||||
self.clss = None
|
|
||||||
self.names = names
|
|
||||||
self.boxes = None
|
|
||||||
self.trk_ids = None
|
|
||||||
self.trk_pts = None
|
|
||||||
self.line_thickness = line_thickness
|
|
||||||
self.trk_history = defaultdict(list)
|
self.trk_history = defaultdict(list)
|
||||||
|
|
||||||
# Speed estimation information
|
self.view_img = view_img # bool for displaying inference
|
||||||
self.current_time = 0
|
self.tf = line_thickness # line thickness for annotator
|
||||||
self.dist_data = {}
|
self.spd = {} # set for speed data
|
||||||
self.trk_idslist = []
|
self.trkd_ids = [] # list for already speed_estimated and tracked ID's
|
||||||
self.spdl_dist_thresh = spdl_dist_thresh
|
self.spdl = spdl_dist_thresh # Speed line distance threshold
|
||||||
self.trk_previous_times = {}
|
self.trk_pt = {} # set for tracks previous time
|
||||||
self.trk_previous_points = {}
|
self.trk_pp = {} # set for tracks previous point
|
||||||
|
|
||||||
# Check if the environment supports imshow
|
# Check if the environment supports imshow
|
||||||
self.env_check = check_imshow(warn=True)
|
self.env_check = check_imshow(warn=True)
|
||||||
|
|
||||||
def extract_tracks(self, tracks):
|
def estimate_speed(self, im0, tracks):
|
||||||
"""
|
|
||||||
Extracts results from the provided tracking data.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
tracks (list): List of tracks obtained from the object tracking process.
|
|
||||||
"""
|
|
||||||
self.boxes = tracks[0].boxes.xyxy.cpu()
|
|
||||||
self.clss = tracks[0].boxes.cls.cpu().tolist()
|
|
||||||
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
|
||||||
|
|
||||||
def store_track_info(self, track_id, box):
|
|
||||||
"""
|
|
||||||
Stores track data.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
track_id (int): Object track id.
|
|
||||||
box (list): Object bounding box data.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
(list): Updated tracking history for the given track_id.
|
|
||||||
"""
|
|
||||||
track = self.trk_history[track_id]
|
|
||||||
bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
|
|
||||||
track.append(bbox_center)
|
|
||||||
|
|
||||||
if len(track) > 30:
|
|
||||||
track.pop(0)
|
|
||||||
|
|
||||||
self.trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
|
|
||||||
return track
|
|
||||||
|
|
||||||
def plot_box_and_track(self, track_id, box, cls, track):
|
|
||||||
"""
|
|
||||||
Plots track and bounding box.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
track_id (int): Object track id.
|
|
||||||
box (list): Object bounding box data.
|
|
||||||
cls (str): Object class name.
|
|
||||||
track (list): Tracking history for drawing tracks path.
|
|
||||||
"""
|
|
||||||
speed_label = f"{int(self.dist_data[track_id])} km/h" if track_id in self.dist_data else self.names[int(cls)]
|
|
||||||
bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255)
|
|
||||||
|
|
||||||
self.annotator.box_label(box, speed_label, bbox_color)
|
|
||||||
cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1)
|
|
||||||
cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1)
|
|
||||||
|
|
||||||
def calculate_speed(self, trk_id, track):
|
|
||||||
"""
|
|
||||||
Calculates the speed of an object.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
trk_id (int): Object track id.
|
|
||||||
track (list): Tracking history for drawing tracks path.
|
|
||||||
"""
|
|
||||||
if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
|
|
||||||
return
|
|
||||||
if self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh:
|
|
||||||
direction = "known"
|
|
||||||
elif self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[0][1] + self.spdl_dist_thresh:
|
|
||||||
direction = "known"
|
|
||||||
else:
|
|
||||||
direction = "unknown"
|
|
||||||
|
|
||||||
if self.trk_previous_times.get(trk_id) != 0 and direction != "unknown" and trk_id not in self.trk_idslist:
|
|
||||||
self.trk_idslist.append(trk_id)
|
|
||||||
|
|
||||||
time_difference = time() - self.trk_previous_times[trk_id]
|
|
||||||
if time_difference > 0:
|
|
||||||
dist_difference = np.abs(track[-1][1] - self.trk_previous_points[trk_id][1])
|
|
||||||
speed = dist_difference / time_difference
|
|
||||||
self.dist_data[trk_id] = speed
|
|
||||||
|
|
||||||
self.trk_previous_times[trk_id] = time()
|
|
||||||
self.trk_previous_points[trk_id] = track[-1]
|
|
||||||
|
|
||||||
def estimate_speed(self, im0, tracks, region_color=(255, 0, 0)):
|
|
||||||
"""
|
"""
|
||||||
Estimates the speed of objects based on tracking data.
|
Estimates the speed of objects based on tracking data.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
im0 (ndarray): Image.
|
im0 (ndarray): Image.
|
||||||
tracks (list): List of tracks obtained from the object tracking process.
|
tracks (list): List of tracks obtained from the object tracking process.
|
||||||
region_color (tuple, optional): Color to use when drawing regions. Defaults to (255, 0, 0).
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(ndarray): The image with annotated boxes and tracks.
|
(ndarray): The image with annotated boxes and tracks.
|
||||||
"""
|
"""
|
||||||
self.im0 = im0
|
|
||||||
if tracks[0].boxes.id is None:
|
if tracks[0].boxes.id is None:
|
||||||
if self.view_img and self.env_check:
|
|
||||||
self.display_frames()
|
|
||||||
return im0
|
return im0
|
||||||
|
|
||||||
self.extract_tracks(tracks)
|
boxes = tracks[0].boxes.xyxy.cpu()
|
||||||
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
|
clss = tracks[0].boxes.cls.cpu().tolist()
|
||||||
self.annotator.draw_region(reg_pts=self.reg_pts, color=region_color, thickness=self.region_thickness)
|
t_ids = tracks[0].boxes.id.int().cpu().tolist()
|
||||||
|
annotator = Annotator(im0, line_width=self.tf)
|
||||||
|
annotator.draw_region(reg_pts=self.reg_pts, color=(255, 0, 255), thickness=self.tf * 2)
|
||||||
|
|
||||||
for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss):
|
for box, t_id, cls in zip(boxes, t_ids, clss):
|
||||||
track = self.store_track_info(trk_id, box)
|
track = self.trk_history[t_id]
|
||||||
|
bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
|
||||||
|
track.append(bbox_center)
|
||||||
|
|
||||||
if trk_id not in self.trk_previous_times:
|
if len(track) > 30:
|
||||||
self.trk_previous_times[trk_id] = 0
|
track.pop(0)
|
||||||
|
|
||||||
self.plot_box_and_track(trk_id, box, cls, track)
|
trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
|
||||||
self.calculate_speed(trk_id, track)
|
|
||||||
|
if t_id not in self.trk_pt:
|
||||||
|
self.trk_pt[t_id] = 0
|
||||||
|
|
||||||
|
speed_label = f"{int(self.spd[t_id])} km/h" if t_id in self.spd else self.names[int(cls)]
|
||||||
|
bbox_color = colors(int(t_id), True)
|
||||||
|
|
||||||
|
annotator.box_label(box, speed_label, bbox_color)
|
||||||
|
cv2.polylines(im0, [trk_pts], isClosed=False, color=bbox_color, thickness=self.tf)
|
||||||
|
cv2.circle(im0, (int(track[-1][0]), int(track[-1][1])), self.tf * 2, bbox_color, -1)
|
||||||
|
|
||||||
|
# Calculation of object speed
|
||||||
|
if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
|
||||||
|
return
|
||||||
|
if self.reg_pts[1][1] - self.spdl < track[-1][1] < self.reg_pts[1][1] + self.spdl:
|
||||||
|
direction = "known"
|
||||||
|
elif self.reg_pts[0][1] - self.spdl < track[-1][1] < self.reg_pts[0][1] + self.spdl:
|
||||||
|
direction = "known"
|
||||||
|
else:
|
||||||
|
direction = "unknown"
|
||||||
|
|
||||||
|
if self.trk_pt.get(t_id) != 0 and direction != "unknown" and t_id not in self.trkd_ids:
|
||||||
|
self.trkd_ids.append(t_id)
|
||||||
|
|
||||||
|
time_difference = time() - self.trk_pt[t_id]
|
||||||
|
if time_difference > 0:
|
||||||
|
self.spd[t_id] = np.abs(track[-1][1] - self.trk_pp[t_id][1]) / time_difference
|
||||||
|
|
||||||
|
self.trk_pt[t_id] = time()
|
||||||
|
self.trk_pp[t_id] = track[-1]
|
||||||
|
|
||||||
if self.view_img and self.env_check:
|
if self.view_img and self.env_check:
|
||||||
self.display_frames()
|
cv2.imshow("Ultralytics Speed Estimation", im0)
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
|
return
|
||||||
|
|
||||||
return im0
|
return im0
|
||||||
|
|
||||||
def display_frames(self):
|
|
||||||
"""Displays the current frame."""
|
|
||||||
cv2.imshow("Ultralytics Speed Estimation", self.im0)
|
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
names = {0: "person", 1: "car"} # example class names
|
names = {0: "person", 1: "car"} # example class names
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue